Chapter 4
Borehole Environment

Lecture notes for PET 370
Spring 2012
Prepared by: Thomas W. Engler, Ph.D., P.E.
Schematic of rotary drilling system
Mud circulation system

• Drilling mud, mudcake, mud filtrate
 \[R_m \quad R_{mc} \quad R_{mf} \]

• Drilling fluids generally adversely affect logging tool response. Function of:
 - tool design
 - borehole size
 - mudcake thickness
 - depth of invasion
 - mud type: oil, water or air

• Electric properties of mud differ from formation, creating a considerable resistivity contrast.
In gauge
• borehole diameter is equal to drilling bit size

Borehole reduction
• mud cake buildup, precursor to permeable formation

Borehole enlargement
• swelling and sloughing of shales
• collapse of poorly cemented porous rock
• dissolution of salts, evaporites

Logging tools typically calibrated on 8” borehole. Corrections necessary for smaller and larger borehole sizes
Profile of a borehole (Bassiouni, 1994)
Applications

• evaluate the borehole environment for logging measurements

• identification of mudcake deposition, evidence of formation permeability

• estimate hole volume to determine cement volume requirements

• determine competent formations to set packers

• provide position data for dipmeter interpretation

Methods

• acoustic
• electromagnetic
• mechanical
Borehole Environment

Caliper Logging

Pad-type devices
Bassiouni (1994)
Anisotropic mechanical properties of the formation.

Result:

Elliptic boreholes

Schematic of elliptical borehole showing the preferential position of a pad-type device

Most probable positions assumed by a Three-arm caliper in an elliptical borehole

Bassiouni, 1994
Comparison of various caliper devices
Invasion - The pressure differential between the mud in the annulus and the formation fluid pressure, forces drilling fluid into the formation.

Dewan, 1983
Borehole Environment

Invasion

Formation damage near the wellbore

Particle invasion and bridging
Western Atlas (1992)
Borehole Environment

Idealized invasion profile

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Flushed Zone</th>
<th>Transition zone</th>
<th>Virgin Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>resistivity</td>
<td>Rxo</td>
<td>Ri</td>
<td>Rt</td>
</tr>
<tr>
<td>porosity</td>
<td>φ</td>
<td>φ</td>
<td>φ</td>
</tr>
<tr>
<td>water saturation</td>
<td>Sxo</td>
<td>Si</td>
<td>Sw</td>
</tr>
<tr>
<td>water</td>
<td>Rmf</td>
<td>Rz</td>
<td>Rw</td>
</tr>
<tr>
<td>equations</td>
<td>Sxo = \frac{Fr \ Rmf}{Rxo}</td>
<td>Si = \frac{Fr \ Rz}{Ri}</td>
<td>Sw = \frac{Fr \ Rw}{Rt}</td>
</tr>
</tbody>
</table>
Invasion profile – water zone
Borehole Environment

Invasion

Invasion profile – oil zone
Chapter 4, Sec. 4.1-4.4, Bassiouni, Z: Theory, Measurement, and Interpretation of Well Logs, SPE Textbook Series, Vol. 4, (1994)

Western Atlas, Introduction to Wireline Log Analysis, Houston, TX (1992), Chapter 1

Hilchie, D. Applied Openhole Log Interpretation, CSM (1978)