Chapter 11
Clean Formation Interpretation

Lecture notes for PET 370
Spring 2011
Prepared by: Thomas W. Engler, Ph.D., P.E.
Clean Formation Interpretation

Applications

- porosity in formations with unknown and/or multiple minerals
- mineralogy determination
- secondary porosity detection
- evaluation of mineral deposits such as sulfur, coal, potash, uranium
Clean Formation Interpretation

- Clean formation; i.e., no shale fraction
- Formation composed of two discernable minerals, V_1 and V_2
- Pore space is liquid-filled.
Clean Formation Interpretation

Idealized CNL-FDC response in common lithologies (Pirson, 1963)
Clean Formation Interpretation

Example CNL-FDC response from Northern Rocky Mountain Well (Pirson, 1963)
• Combine two porosity logs (density, neutron, or sonic) onto one chart.

• Use a reference scale, typically limestone, known as apparent limestone porosity units.
 • neutron from equivalence charts
 • sonic from transit time charts
 • density from mass balance equation

• Three equations for three unknowns

\[
\rho_b = f(\phi, V_1, V_2) \\
\phi_n = f(\phi, V_1, V_2) \\
1 = \phi + (1-\phi)*(V_1 + V_2)
\]

where \(V_1\) and \(V_2\) are volumetric mineral fractions as percent of grain volume.

• Isoporosity and constant mineral scales
Clean Formation Interpretation

Selection of crossplot:

1. based on tool types
2. Age of CNL tool (pre 1986)
3. fluid density, $\rho_f = 1.0$ or 1.1 gm/cc
Clean Formation Interpretation

Example
Determine the porosity and lithology of points A through E on the attached FDC - CNL log. The mud density is 1.1 gm/cc and the CNL was run before 1986.
Determination of ρ_{maa} from FDC and CNL logs (Fresh mud)
Clean Formation Interpretation

Analytical solution

\[U = \phi U_f + (1 - \phi) \sum_{i=1}^{3} V_i \cdot U_{ma_i} \]

\[\phi_N = \phi(H_n)_{f} + (1 - \phi) \sum_{i=1}^{3} V_i \cdot H_{Nma_i} \]

\[\rho_b = \phi \rho_f + (1 - \phi) \sum_{i=1}^{3} V_i \cdot \rho_{ma_i} \]

\[\phi + (1 - \phi) \sum_{i=1}^{3} V_i = 1 \]
Clean Formation Interpretation

Graphical

1. M/N plot - Combine sonic, density, and neutron readings to minimize porosity effect and maximize matrix effect.

M/N Plot Limitations
- Separation between sandstone, limestone, and dolomite points is narrow, resulting in ambiguous answers.
- Tedious calculations
- M and N lack any physical meaning
- Multiple matrix points for varying porosity ranges.
- Readings affected by: shale, gas, secondary porosity, evaporates.

2. MID plots
 a. Density-neutron-sonic
 b. Density-neutron-Pe

Best
Clean Formation Interpretation

- inputs are ρ_b, Pe from LDT and ϕ_N
- Determine ρ_{maa} and ϕ_{xp}

\[
\phi_{xp} = \frac{\phi_n + \phi_d}{2}
\]

\[
\rho_{maa} = \frac{\rho_b - \phi_{xp}\rho_f}{1 - \phi_{xp}}
\]

- Determine U, volumetric photoelectric absorption index from:

\[
U = \frac{P_e (\rho_b + 0.1883)}{1.0704}
\]
Clean Formation Interpretation

- By volume balance,

\[U = \phi_{xp} U_f + (1 - \phi_{xp}) U_{maa} \]

Where

- \(U_f \) is the fluid volumetric index
- \(U_{maa} \) is the apparent matrix...index

or

\[U_{maa} = \frac{U - U_f \phi_{xp}}{1 - \phi_{xp}} = \sum_{i=1}^{3} V_i \ast U_{maa} \]
Clean Formation Interpretation

Exercise
Clean Formation Interpretation

Chapter 14

References

• Schlumberger, Log Interpretation Charts, Houston, TX (1995)
• Schlumberger, Log Interpretation and Principles, Houston, TX (1989)

• Western Atlas, Log Interpretation Charts, Houston, TX (1992)
• Western Atlas, Introduction to Wireline Log Analysis, Houston, TX (1995)

• Halliburton, Openhole Log Analysis and Formation Evaluation, Houston, TX (1991)
• Halliburton, Log Interpretation Charts, Houston, TX (1991)