Why resistivity logs?

Estimate R_t

Why need R_t?

$$S_w = \sqrt[FR_w]{R_t}$$
Resistivity Logs

<table>
<thead>
<tr>
<th>Classification</th>
<th>Flushed Zone 1-6 in.</th>
<th>Shallow 0.5-1.5 ft</th>
<th>Medium 1.5-3 ft</th>
<th>Deep 3+ ft</th>
<th>Years</th>
<th>Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Mud</td>
<td>Microlog (ML)</td>
<td>16” Normal</td>
<td>Medium Phasor Induction</td>
<td>Deep Induction (6FF40)</td>
<td>1955-80</td>
<td>IES, IEL</td>
<td>Obsolete</td>
</tr>
<tr>
<td></td>
<td>Miniloga</td>
<td>Spherically Focused</td>
<td>Induction</td>
<td>ISF</td>
<td>1970-85</td>
<td>ISF</td>
<td>Obsolete</td>
</tr>
<tr>
<td></td>
<td>Proximity (PL)</td>
<td>LL8/Short Guard</td>
<td>Deep Induction</td>
<td>DIL-LL8, DISG</td>
<td>1965</td>
<td>DIL-LL8, DISG</td>
<td>Obsolete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spherically Focused</td>
<td>Medium Induction</td>
<td>DIL-SFL</td>
<td>1975</td>
<td>DIL-SFL</td>
<td>Obsolete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spherically Focused</td>
<td>Deep Phasor Induction</td>
<td>Phasor</td>
<td>1985</td>
<td>Phasor</td>
<td>Current</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Array</td>
<td>Induction</td>
<td>1990</td>
<td>AIT</td>
<td>AIT</td>
<td>Current</td>
</tr>
<tr>
<td>Salt Mud</td>
<td>Micro-laterolog (MLL)</td>
<td>Laterolog-7 Tool</td>
<td>Deep Laterolog-3 / Guard</td>
<td>LL7, LL3, guard</td>
<td>1955-80</td>
<td>LL7, LL3, guard</td>
<td>Obsolete</td>
</tr>
<tr>
<td></td>
<td>MLL</td>
<td>Shallow Laterolog</td>
<td>Deep Laterolog</td>
<td>DLL-MLL, DLL-MSFL</td>
<td>1972</td>
<td>DLL-MLL, DLL-MSFL</td>
<td>current</td>
</tr>
<tr>
<td></td>
<td>MSFL</td>
<td>(LLS)</td>
<td>(LLD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Resistivity Logs

Example: Old ES

Bagley Penn Field
Chambers No. 2
Lea County, NM
<table>
<thead>
<tr>
<th>Flushed Zone 1-6 in.</th>
<th>Shallow 0.5-1.5 ft</th>
<th>Medium 1.5-3 ft</th>
<th>Deep 3+ ft</th>
<th>Years</th>
<th>Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>16” Normal</td>
<td>64” Normal</td>
<td>18’ Lateral</td>
<td></td>
<td>up to 1955</td>
<td>ES, EL</td>
<td>Obsolete</td>
</tr>
</tbody>
</table>

Fresh Mud

- Microlog (ML)
- Minilog
- Proximity (PL)

R_{mf}>2R_w

- Spherically Focused
- LL8/Short Guard
- Spherically Focused
- Spherically Focused

Induction (6FF40)

- Medium Induction
- Deep Induction
- Deep Phasor Induction

Years

- 1955-80
- 1970-85
- 1965
- 1975
- 1985

Name

- IES, IEL
- ISF
- DIL-LL8, DIFL, DISG
- DIL-SFL
- Phasor

Comments

- Obsolete
- Obsolete
- Current
- Current

Array Induction Tool

- 1990
- AIT

Salt Mud

- MicroLaterolog (MLL)
- MLL
- MSFL

R_{mf}<2R_w

- Shallow Laterolog (LLS)
- Deep Laterolog (LLD)

Years

- 1955-80
- 1972

Name

- LL7, LL3, guard
- DLL-MLL, DLL-MSFL

Comments

- Obsolete
- Current
Resistivity Logs

Example: IEL

IES or IEL; short normal or spherically focused curve with a deep induction.

(No correction for invasion!)
Resistivity Logs

<table>
<thead>
<tr>
<th>Flushed Zone 1-6 in.</th>
<th>Shallow 0.5-1.5 ft</th>
<th>Medium 1.5-3 ft</th>
<th>Deep 3+ ft</th>
<th>Years</th>
<th>Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>16” Normal</td>
<td>64” Normal</td>
<td>18’ Lateral</td>
<td>up to 1955</td>
<td>ES, EL</td>
<td>obsolete</td>
<td></td>
</tr>
<tr>
<td>Fresh Mud</td>
<td>Microlog (ML)</td>
<td>Spherically Focused</td>
<td>Induction (6FF40)</td>
<td>1955-80</td>
<td>IES, IEL</td>
<td>Obsolete</td>
</tr>
<tr>
<td>R_mf>2R_w Or</td>
<td>Minilog</td>
<td>LL8/Short Guard</td>
<td>Spherically Focused</td>
<td>Induction</td>
<td>1970-85</td>
<td>ISF</td>
</tr>
<tr>
<td>R_t<200</td>
<td>Proximity (PL)</td>
<td>Medium Induction</td>
<td>Deep Induction</td>
<td>1965</td>
<td>DIL-LL8, DIFL, DISG</td>
<td>Obsolete</td>
</tr>
<tr>
<td>Spherically Focused</td>
<td>Spherically Focused</td>
<td>Medium Phasor Induction</td>
<td>Deep Phasor Induction</td>
<td>1985</td>
<td>Phasor</td>
<td>Current</td>
</tr>
<tr>
<td>Spherically Focused</td>
<td>Array</td>
<td>Induction Tool</td>
<td>1990</td>
<td>AIT</td>
<td>Current</td>
<td></td>
</tr>
</tbody>
</table>

Salt Mud

| R_mf<2R_w Or | Micro-laterolog (MLL) | Shallow Laterolog-7 / Guard | Laterolog-3 / Guard | 1955-80 | LL7, LL3, guard | Obsolete |
| R_t>200 | MLL MSFL | Deep Laterolog (LLD) | Deep Laterolog (LLD) | 1972 | DLL-MLL DLL-MSFL | Current |
Resistivity Logs

Example:
SFL-ILM-ILD

Replaced in the mid-1960s with a Dual induction tool (shallow, medium, and deep curves); DIL-LL8, DIFL, DISG

Improved DIL with the addition of the spherically focused shallow log; DISF

Big Lake (San Andres)
<table>
<thead>
<tr>
<th>Fresh Mud</th>
<th>Microlog (ML) Minilog</th>
<th>Microlog (ML) Minilog</th>
<th>16” Normal</th>
<th>16” Normal</th>
<th>Induction (6FF40)</th>
<th>Induction (6FF40)</th>
<th>1955-80</th>
<th>IES, IEL</th>
<th>Obsolete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or R_m<2R_w</td>
<td>Proximity (PL)</td>
<td>Spherically Focused</td>
<td>Spherically Focused</td>
<td>Spherically Focused</td>
<td>Deep Induction</td>
<td>Deep Induction</td>
<td>1970-85</td>
<td>ISF</td>
<td>Obsolete</td>
</tr>
<tr>
<td>Or R_t<200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Obsolete</td>
</tr>
<tr>
<td>Or R_m<2R_w</td>
<td>MLL</td>
<td>Shallow Laterolog (LLS)</td>
<td>Deep Laterolog (LLD)</td>
<td>Deep Laterolog (LLD)</td>
<td></td>
<td></td>
<td></td>
<td>DLL-MLL DLL-MSFL</td>
<td>current</td>
</tr>
</tbody>
</table>
Resistivity Logs

Example: High resolution or Phasor induction

Next improvement is known as the *Phasor Induction Tool* - better thin bed resolution and automatic corrections.
Resistivity Logs Classification

<table>
<thead>
<tr>
<th>Flushed Zone 1-6 in.</th>
<th>Shallow 0.5-1.5 ft</th>
<th>Medium 1.5-3 ft</th>
<th>Deep 3+ ft</th>
<th>Years</th>
<th>Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>16” Normal</td>
<td>64” Normal</td>
<td>18’ Lateral</td>
<td></td>
<td>up to 1955</td>
<td>ES, EL</td>
<td>obsolete</td>
</tr>
<tr>
<td>Fresh Mud</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_m > 2R_w$</td>
<td>Microlog (ML)</td>
<td>Spherically Focused</td>
<td>Induction (6FF40)</td>
<td>1955-80</td>
<td>IES, IEL</td>
<td>Obsolete</td>
</tr>
<tr>
<td>Or</td>
<td>Minilog</td>
<td>Spherically Focused</td>
<td>Deep Induction</td>
<td>1970-85</td>
<td>ISF</td>
<td>Obsolete</td>
</tr>
<tr>
<td>$R_t < 200$</td>
<td>Proximity (PL)</td>
<td>Spherically Focused</td>
<td>Medium Induction</td>
<td>1965</td>
<td>DIL-LL8, DIFL, DISG</td>
<td>Obsolete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spherically Focused</td>
<td>Deep Phasor Induction</td>
<td>1975</td>
<td>DIL-SFL</td>
<td>Current</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spherically Focused</td>
<td>Medium Phasor Induction</td>
<td>1985</td>
<td>Phasor</td>
<td>Current</td>
</tr>
<tr>
<td>Array</td>
<td>Induction</td>
<td>Medium</td>
<td>Deep</td>
<td>1990</td>
<td>AIT</td>
<td>Current</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phasor</td>
<td>Phasor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt Mud</td>
<td>Micro-laterolog (MLL)</td>
<td>Shallow Laterolog-7 / Guard</td>
<td>Deep Laterolog (LLD)</td>
<td>1955-80</td>
<td>LL7, LL3, guard</td>
<td>Obsolete</td>
</tr>
<tr>
<td>$R_m < 2R_w$</td>
<td>MLL</td>
<td>Deep Laterolog (LLD)</td>
<td></td>
<td>1972</td>
<td>DLL-MLL, DLL-MSFL</td>
<td>current</td>
</tr>
<tr>
<td>Or</td>
<td>MSFL</td>
<td>Deep Laterolog (LLD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_t > 200$</td>
<td></td>
<td>Deep Laterolog (LLD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Resistivity Logs

Example: Array induction

DIL log

Ambiguous reading

Correct reading

AIT log

Source: Halliburton
Resistivity Logs

- where fresh mud or oil-base mud (or air-filled holes) is used,

- where the R_{mf}/R_w ratio is greater than 2.5 to 3,

- where R_t is less than 200 ohm-m
Resistivity Logs

Theory

Circumferential Current I

\[\frac{1}{R_{ILD}} = \frac{G_m}{R_m} + \frac{G_{xo}}{R_{xo}} + \frac{G_t}{R_t} + \frac{G_s}{R_s} \]

or

\[C_{ILD} = G_mC_m + G_{xo}C_{xo} + G_tC_t + G_sC_s \]
Resistivity Logs

Determination of Rt

Read apparent resistivity from well log, R_a

Correct for borehole effect (if necessary)

Correct for bed thickness effect (if necessary)

Correct for invasion effect (if three curves are present)

True formation resistivity, R_t
Resistivity Logs

Determination of R_t

Read **apparent** resistivity from well log, R_{ILD} or C_{ILD}

$$C_{ILD} = G_m C_m + G_{xo} C_{xo} + G_t C_t + G_s C_s$$

Correct for **borehole** effect (if necessary)

$$C'_{ILD} = C_{ILD} - G_m C_m = G_{xo} C_{xo} + G_t C_t + G_s C_s$$
Resistivity Logs

Given
1.5” standoff in a 14.6” hole
Rm = 0.35 ohm-m
ILD = 50 ohm-m (20 mmho/m)

Solution
hole signal = 5.7 mmho/m
Ct (corr) = Ct - hole signal
Rt = 70 ohm-m
Resistivity Logs

- significant when:
 - mud is salty
 - hole size is large and/or oval
 - formation resistivity is high

- **Corrections** greatest for:
 - induction tool against borehole, standoff is zero.
 - ILM than ILD
 - holes > 12”
Read \textbf{apparent} resistivity from well log, R_{ILD} or C_{ILD}

$$C_{ILD} = G_m C_m + G_{xo} C_{xo} + G_t C_t + G_s C_s$$

\[\downarrow\]

Correct for \textbf{borehole} effect (if necessary)

$$C'_{ILD} = C_{ILD} - G_m C_m = G_{xo} C_{xo} + G_t C_t + G_s C_s$$

\[\downarrow\]

Correct for \textbf{bed thickness} effect (if necessary)

$$C''_{ILD} = C'_{ILD} - G_s C_s = G_{xo} C_{xo} + G_t C_t$$
Resistivity Logs

• The bed thickness effect is a function of bed thickness, vertical resolution of tool, and resistivity contrast R_t/R_s.

• Corrections necessary for:
 – thick beds with $R_t/R_s >> 1$
 – thin beds with large R_t/R_s contrast
Resistivity Logs

Bed thickness correction

Deep Induction Log Bed Thickness Correction (Schlumberger)
Resistivity Logs

Determination of \(R_t \)

Read **apparent** resistivity from well log, \(R_{ILD} \) or \(C_{ILD} \)

\[
C_{ILD} = G_m C_m + G_{xo} C_{xo} + G_t C_t + G_s C_s
\]

Correct for **borehole** effect (if necessary)

\[
C'_{ILD} = C_{ILD} - G_m C_m = G_{xo} C_{xo} + G_t C_t + G_s C_s
\]

Correct for **bed thickness** effect (if necessary)

\[
C''_{ILD} = C'_{ILD} - G_s C_s = G_{xo} C_{xo} + G_t C_t
\]

Correct for **invasion** effect (if three curves are present)

\[
C''_{ILD} = G_{xo(d_i)} C_{xo} + G_{t(d_i)} C_t
\]

\[
C''_{ILM} = \ldots
\]

\[
C''_{SFL} = \ldots
\]

True formation resistivity, \(R_t \)
Example 1

Given
R_t = 10 ohm-m
Fresh mud, R_m = 1
R_xo = 20
d_i = 65”

Solution
G(ILD) = 0.2

R_a = 11 ohm-m
(10% error)
Resistivity Logs

Example 1

Given
- \(R_t = 10 \text{ ohm}-\text{m} \)
- Salt mud, \(R_m = 0.05 \)
- \(R_{xo} = 1 \)
- \(d_i = 65'' \)

Solution
- \(G(ILD) = 0.2 \)
- \(R_a = 3.6 \text{ ohm}-\text{m} \)
 (Big error)
Resistivity Logs

Assume a step profile for invasion

Tornado charts to correct for invasion, determine R_t, R_{xo}, and d_i

- Rt correction factor between 0.75 and 1.0
- Depth of invasion is reflected by induction resistivity contrast:
 - $R_{im}/R_{id} > 1.5$ indicates deep invasion
 - $R_{im}/R_{id} < 1.2$ indicates shallow invasion
Resistivity Logs

Invasion Correction

Example

\[R_{ILD} = 10 \, \Omega m \]
\[R_{ILM} = 14 \, \Omega m \]
\[R_{SFL} = 90 \, \Omega m \]

Solution:

(1). \[\frac{R_{SFL}}{R_{ID}} = 9 \]

\[\frac{R_{IM}}{R_{ID}} = 1.4 \]
Resistivity Logs

Invasion Correction

\[
\frac{R_t}{R_{ID}} = 0.89 \text{ from chart (2)}
\]

\[
R_t = \left(\frac{R_t}{R_{ID}}\right)^* R_{ID} = 8.9 \Omega - m \quad (3)
\]

\[
R_{xo} = 14 \Rightarrow \frac{R_{xo}}{R_t} = 14
\]

\[
R_{xo} = 125 \Omega - m \quad (4)
\]

\[
d_i = 50'' \quad (5)
\]
Resistivity Logs

Invasion Correction

Example

\[R_{\text{ILD}} = 10 \text{ } \Omega \text{m} \]
\[R_{\text{ILM}} = 14 \text{ } \Omega \text{m} \]
\[R_{\text{SFL}} = 90 \text{ } \Omega \text{m} \]
Resistivity Logs

Example:
SFL-ILM-ILD

Big Lake (San Andres)
Resistivity Logs

Invasion Correction

Big Lake (San Andres)
Big Lake (San Andres) Example

<table>
<thead>
<tr>
<th>Zone</th>
<th>ILD</th>
<th>ILM</th>
<th>SFL</th>
<th>SFL/ILD</th>
<th>ILM/ILD</th>
<th>Rt/RILD</th>
<th>Rt</th>
<th>Rxo/Rt</th>
<th>Rxo</th>
<th>di”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>14</td>
<td>100</td>
<td>10.0</td>
<td>1.40</td>
<td>0.92</td>
<td>9.2</td>
<td>15</td>
<td>138</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>66</td>
<td>110</td>
<td>2.50</td>
<td>1.50</td>
<td>0.75</td>
<td>33</td>
<td>5</td>
<td>165</td>
<td>90+</td>
</tr>
<tr>
<td>3</td>
<td>6.8</td>
<td>8.3</td>
<td>50</td>
<td>7.35</td>
<td>1.22</td>
<td>0.99</td>
<td>6.7</td>
<td>12</td>
<td>80</td>
<td>35</td>
</tr>
</tbody>
</table>

Schlumberger Chart, Rxo/Rm = 20
Resistivity Logs

Example: High resolution or Phasor induction

Improvements
(1). Thinner bed resolution (2 ft.)

(2). Comprehensive set of automatic corrections for:
- shoulder effect and thin bed resolution
- skin effect
- borehole and cave effect
- large boreholes
- invasion effects
Array Induction Image Tool (AIT) or High Resolution Imager (HRI)

Main features:

1. full borehole corrections over a range of R_t/R_m contrasts

2. the ability to use short array information to solve for effective borehole parameters

3. Five log curves are presented at median depths of investigation of 10, 20, 30, 60 and 90 inches. Three vertical resolutions of 1, 2 and 4 ft.

4. improvement in invasion profiles for both oil- and water-based muds. This includes accurate R_t estimate and a quantitative description of the transition zone.

5. Capability of producing resistivity and saturation images of the formation.
Resistivity Logs

Example: Array induction

DIL log

Ambiguous reading

Correct reading

Source: Halliburton
Resistivity Logs

Example: Array induction

Estimated invaded volumes from AIT log (Halliburton)
Resistivity Logs

Chapter 5, Sec 5 and 6

Schlumberger, Log Interpretation Charts, Houston, TX (1995)

Western Atlas, Log Interpretation Charts, Houston, TX (1992)