Lecture 2: Probability: many variables

Math 586

Recap: (Lecture 1)

• “A random variable is a variable whose values are randomly generated according to some probabilistic mechanism” - Isaaks & Srivastava

• $X =$ random variable, $x =$ number.

• $F(x) = P(X \leq x) = \int_{-\infty}^{x} f(t) \, dt$ (cumulative) distribution function.

• $f(x)$ density (continuous) or $P(X = x_i)$ (discrete)

Joint distribution

• If $X_1, ..., X_n$ are r.v. then

$$F(x_1, ..., x_n) = P(X_1 \leq x_1, X_2 \leq x_2, ..., X_n \leq x_n)$$

is their joint distribution function.

• If $F(x_1, ..., x_n)$ is differentiable in each x_i then

$$f(x_1, x_2, ..., x_n) = \frac{\partial^n F(x_1, x_2, ..., x_n)}{\partial x_1 \partial x_2 ... \partial x_n}$$

is their joint density function.

• If $\mathbf{X} = (X_1, X_2, ..., X_n)'$ is a random vector (column vector, $n \times 1$), and subset $A \subset \mathbb{R}^n$ then

$$P(\mathbf{X} \in A) = \int \int_A \cdots \int f(x_1, x_2, ..., x_n) \, dx_1 \, dx_2 ... \, dx_n$$

• Expectation of a function

$$\mathbb{E}[g(X_1, ..., X_n)] = \int \int \cdots \int g(x_1, x_2, ..., x_n) \cdot f(x_1, x_2, ..., x_n) \, dx_1 \, dx_2 ... \, dx_n$$
• Statistical independence

\[X_1, \ldots, X_n \] are statistically independent iff

\[f(x_1, x_2, \ldots, x_n) = f_1(x_1) \cdot f_2(x_2) \cdot \ldots \cdot f_n(x_n) \]

One or more r.v.’s can be functionally dependent even though they are statistically independent.

Estimates of Distributions

Conceptual model: Population (of all feasible observations) from which we draw samples to estimate distribution and its properties, such as expected value.

Example: consider a manufactured item with design engineering strength, but actual strength varies in production. The “model strength” is a r.v. \(X \) with distribution \(F(x) \). We don’t know \(F \) a priori but must estimate it from the data.

- Estimate \(F(x_0) \) based on \(n \) samples \(x_1, x_2, \ldots, x_n \), e.g. using empirical CDF

\[\hat{F}(x_0) = \frac{\#\{x_i \leq x_0\}}{n} \quad \text{a.k.a. ogive} \]

- Estimate the mean strength by using sample mean

\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

This is an estimator for \(\mathbb{E}[X] \).
• Note: there is an important difference between the estimate (\(\hat{F} \) or \(\pi \)) and the true value.

• Algorithm to calculate \(\hat{F} \): sort \(x_i \)'s from smallest to largest, get \(x_1^*, x_2^*, ..., x_n^* \) then

\[
\hat{F}(x) = \frac{j}{n}, \quad x_j^* \leq x \leq x_{j+1}^*
\]

example: take \(n = 10 \) samples of porosity (in %):

34, 27, 15, 23, 21, 31, 26, 29, 16, 31

reorder: ⇒ 15, 16, 21, 23, 26, 27, 29, 31, 31, 34

Also, calculate sample mean \(\bar{x} \).

Variance and Covariance

• Variance
 - Let \(\mathbb{E}[X] = \mu \).

\[
Var(X) = \sigma^2 = \mathbb{E}[(X - \mu)^2] \quad 2\text{nd central moment}
\]

 - \(\sigma \) is the Standard Deviation
 - Also \(Var(X) = \mathbb{E}[X^2 - 2\mu X + \mu^2] = \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 \Rightarrow \)

\[
Var(X) = \mathbb{E}[X^2] - \mu^2 \quad \text{“Computational formula for variance”}
\]
• Covariance
 - Given r.v.’s X_1 and X_2 with means μ_1, μ_2,
 \[
 \text{Cov}(X_1, X_2) = \mathbb{E}[(X_1 - \mu_1)(X_2 - \mu_2)] = \mathbb{E}[X_1X_2] - \mu_1\mu_2
 \]

 Note: $\text{Cov}(X, Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_x)(y - \mu_y)f(x, y) \, dx \, dy$
 Replace integral by summation for discrete case.
 - If X_1 and X_2 are statistically independent then
 \[
 \text{Cov}(X_1, X_2) = 0
 \]

 - Correlation coefficient between X_1 and X_2 with st.dev. σ_1, σ_2
 \[
 \rho = \frac{\text{Cov}(X_1, X_2)}{\sigma_1\sigma_2}
 \]

• Variance of the sum:
 \[
 \text{Var}(a_1X_1 + a_2X_2) = \mathbb{E}[(a_1X_1 - a_1\mu_1 + a_2X_2 - a_2\mu_2)^2] =
 \]
 \[
 = a_1^2\mathbb{E}[(X_1 - \mu_1)^2] + a_2^2\mathbb{E}[(X_2 - \mu_2)^2] + 2a_1a_2\mathbb{E}[(X_1 - \mu_1)(X_2 - \mu_2)] =
 \]
 \[
 = a_1^2\text{Var}(X_1) + a_2^2\text{Var}(X_2) + 2a_1a_2\text{Cov}(X_1, X_2)
 \]
 Thus,
 \[
 \text{Var}(a_1X_1 + a_2X_2) = a_1^2\text{Var}(X_1) + a_2^2\text{Var}(X_2) + 2a_1a_2\text{Cov}(X_1, X_2)
 \]
 - If X_1, X_2 are independent, then $\text{Cov} = 0$ and
 \[
 \text{Var}(a_1X_1 + a_2X_2) = a_1^2\text{Var}(X_1) + a_2^2\text{Var}(X_2)
 \]
 - Consider n r.v.’s, X_1, \ldots, X_n then
 \[
 \text{Var} \left(\sum_{i=1}^{n} a_i X_i \right) = \sum_{i=1}^{n} a_i^2 \text{Var}(X_i) + \sum_{i \neq j} a_i a_j \text{Cov}(X_i, X_j)
 \]

 Note: kriging algorithms are based on minimizing variance of linear combinations of r.v.’s. This expression for variance is very important. The covariance on RHS will carry information about spatial continuity.
 - If X_1, X_2, \ldots, X_n are independent, then $\text{Var} \left(\sum_{i=1}^{n} a_i X_i \right) = \sum_{i=1}^{n} a_i^2 \text{Var}(X_i)$