1. Let \(R \) be the region bounded by the curve \(y = (x - 2)^2 \) and the line \(y = 4 \).
 a. Find the volume of the solid generated by revolving \(R \) about the \(x \)-axis.
 b. Find the volume of the solid generated by revolving \(R \) about the \(y \)-axis.
 c. Find the volume of the solid generated by revolving \(R \) about the line \(x = -1 \).

2. Find the arc length of the curve \(y = \frac{1}{3} (x^2 + 2)^{3/2} \) for \(0 \leq x \leq 1 \).

3. A conical tank 5 ft in diameter and 10 feet in height is resting on its base. The tank is filled with oil (density 40 lb/ft\(^3\)), how much work is required to pump all the oil over the top of the tank?

4. Evaluate the following:
 a. \(\int x \arctan x \, dx \).
 b. \(\int \frac{x^2 + 8x - 3}{x^3 + 3x^2} \, dx \)
 c. \(\int \frac{x^3}{\sqrt{x^2 + 9}} \, dx \)
 d. \(\int \frac{x^2}{(4 - x^2)^{3/2}} \, dx \)
 e. \(\int \frac{1}{\sqrt{x - 2}} \, dx \)

5. Using calculus, find the surface area of a sphere of radius \(r \).

6. Write the Taylor series for \(f(x) = \frac{1}{2x - 5} \) at \(a = 3 \).

7. Find the radius and interval of convergence for the power series \(\sum_{n=1}^{\infty} \frac{(x + 2)^n}{n4^n} \).

8. Determine whether the series \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[4]{n}} \) converges absolutely, converges conditionally or diverges.
9. Determine whether the series \(\sum_{n=1}^{\infty} \frac{n^2 - 1}{3n^4 + 1} \) converges or diverges.

10. Find the six roots of \(-64i\).

11. Find the area of the region inside \(r = -3 \cos \theta \) and outside \(r = 1 - \cos \theta \).

12. Replace the polar equation \(r = 3 \cos \theta \) with the Cartesian equation. Identify or describe the graph.

13. For the parametric curve \(x = e^{t^2}, \ y = t - \ln t^2 \), write the equation of the line tangent to the curve at \(t = 1 \).

14. For curve, \(C \), defined by the parametric equations

\[
x = 4\sqrt{t}, \quad y = \frac{t^3}{3} + \frac{1}{2t^2} \quad 1 \leq t \leq 4,
\]

 a. Find the arc length of the curve \(C \).
 b. Find the surface area when the curve \(C \) is rotated about the \(x \)-axis.

15. Evaluate the expression
 a. \(\frac{3 + 2i}{1 + i} \)
 b. \(\left(\frac{1}{2} + \frac{1}{2}i \right)^{15} \)
 c. \(|-1 + 2\sqrt{2}i| \)