1. For the parametric curve \(x = t^2 + 4 \), \(y = 6 - t \) for \(-\infty < t < \infty \),
 a. Eliminate the parameter to obtain an equation in \(x \) and \(y \).
 b. Identify or briefly describe the curve.

2. Find an equation of the line tangent to the cycloid \(x = t - \sin t \), \(y = 1 - \cos t \) at \(t = \pi / 6 \).

3. Find the slope of the line tangent to the polar curve \(y = 4\sin 2\theta \) at the tip of the leaves.

4. Plot the point with polar coordinates \((2, 5\pi / 6) \), then find the Cartesian coordinates of the points.

5. For the point with Cartesian coordinates \((\sqrt{3}, -3) \)
 a. Find the polar coordinates \((r, \theta) \) of the point, where \(r > 0 \) and \(0 \leq \theta \leq 2\pi \).
 b. Find the polar coordinates \((r, \theta) \) of the point, where \(r < 0 \) and \(0 \leq \theta \leq 2\pi \).

6. Replace the Cartesian equation by equivalent polar equations
 a. \(x + y = 4 \)
 b. \((x - 5)^2 + y^2 = 25 \)

7. Replace the polar equation by the equivalent Cartesian equation. Then describe or identify the graph.
 a. \(r = 4 \csc \theta \)
 b. \(r = 8 \cos \theta - 15 \sin \theta \)

8. Write the equation of the tangent line to the curve \(r = 1 + \sin \theta \) at \(\theta = \frac{3\pi}{4} \).

9. Graph the polar equation
 a. \(r = 4 \sin \theta \)
 b. \(r = 2 + 2 \cos \theta \)
 c. \(r = 5 \cos 3\theta \)

10. Find the area inside \(r = 3 + 2 \sin \theta \) and outside \(r = 2 \).

11. Find the area that lies inside both curves \(r = \sin 2\theta \), \(r = \sin \theta \).

12. Find the area of the region enclosed by the inner loop of \(r = \frac{1}{2} - \cos \theta \). Set up the integral but do not evaluate.
13. Evaluate the expression and write your answer in the from $x + yi$
 a. $\frac{1+4i}{3+2i}$
 b. $|2\sqrt{3} + 2i|$

14. Write $6e^{i\pi/3}$ in the form $x + yi$

15. Find the indicated power of the following using De Moivre’s Theorem. Write your answer in the form $x + yi$
 $(-2 - 2i)^4$

16. Find the fifth roots of 32. Sketch the roots in the complex plane.