Problem Set 2

Reading for Today's Lecture
Introduction to Chemical Principles Chapter 2.1 – 2.4

Reading for Tuesday's Lecture
Introduction to Chemical Principles Chapter 2.5 – 2.6

Practice Problems
Chapter 2: 2, 5, 17.

Additional Problems

1. Categorize each of the following common problems as giving rise to a systematic or random error:
 a) An sample being weighed is hygroscopic; absorbs Water from the Air.
 b) A radioactive sample undergoing decay has its decay products counted repeatedly, without change in sampling conditions. Each trial yields a slightly different count over the same period of time.

2. The following are typical errors which can occur when making a Mass measurement on an Analytical Balance; a high quality balance. Identify each as Systematic or Random.
 a) The pan enclosure doors are not closed.
 b) The balance is not located on a solid counter.
 c) The balance is not leveled.

3. An analyst reports his analytic method produced a result which is 4% off from the National Institute of Standards and Technology (NIST) reported standard value. He is expressing confidence in the:
 a) accuracy of his measurement.
 b) precision of his measurement.
 c) accuracy and precision of his measurement.
 Explain your reasoning.

4. The boiling point of Ethanol was determined by a student to be 77.1°C. What is the percentage error for this result? The Merck Index reports the boiling point of Ethanol to be 78.5°C.
5. A student reports his measured value of the density of a sample is too low by 7%. If the accepted value for the density is 0.74 g/mL, what was the student’s measured result?

6. The numerical value for π is approximately:

 3.14159265358979323846

 a) What is the percentage error introduced if we use the value 3.14 for π?
 b) Numerically π can be estimated by the ratio 22/7. What is the percentage error introduced if we use this value for π?

7. A certain type of paper used for stationary is referred to as “twenty pound” because a ream (500 sheets) of 17” x 22” paper weighs 20 lb. Suppose the manufacturer prepares a ream for which each dimension was 5% systematically too large. How much will the ream weigh?