Problem 2. Let $A = (a_{ij})$ be a matrix and (b_1, \ldots, b_n) and (x_1, \ldots, x_n) be vectors with real entries. Using Θ notation, describe the number of arithmetic operations in the algorithm

\begin{verbatim}
for i = 1, \ldots, n
 for j = 1, \ldots, i - 1
 $x_i = b_i - a_{ij}x_j$
 end
 $x_i = b_i/a_{ii}$
end
\end{verbatim}

let C be the number of arithmetic operations (flops).

$$
C = \sum_{i=1}^{n} \left(\sum_{j=1}^{i-1} 2 + 1 \right) = \sum_{i=1}^{n} 2(i-1) + n
$$

$$
= 2\sum_{i=1}^{n-1} + n = 2\left(\frac{(n-1)n}{2}\right) + n = n^2.
$$

$C = \Theta(n^2)$.

Problem 3. Give a recursive algorithm for computing na, where $n \in \mathbb{Z}^+$ and $a \in \mathbb{R}$.

$$
n = 1 \Rightarrow na = a
$$

$$
na = (n-1)a + a
$$

procedure na(n, a)
 if $n = 1$ then
 output = 1
 else
 output = na(n-1, a) + a
 end
end

output 3.