School name

Place a checkmark or X in all circles (○) when you have inspected that the instruments satisfy the stated conditions. Score the students by entering a number before the slash in each scoring box \[
\frac{\text{score}}{\text{maximum points}}\] where \(n \) is the maximum number of points for that category.

Team member name A _____ Grade

Instrument type _____ Senior?

○ No electric or electronic parts
○ No toys or professional instruments or their parts
○ No purchased items: bells, whistles, mouthpieces, reeds, instrument strings, audio oscillators
○ Energy supplied solely by student, no electricity
○ Wind instrument family
○ Built by student within the last year

\[
\frac{\text{score}}{5}
\]

Play the lowest and highest notes. How many octaves?

1 Less than a fifth
2 An octave or less
3 Less than 2 octaves
4 Two octaves
5 More than 2 octaves

\[
\frac{\text{score}}{5}
\]

Sound quality compared to standard instruments:

0 No sound at all
1 Pathetic
2 Poor
3 Adequate
4 Pretty good
5 Sounds like the standard instrument (or better), and in standard tune (check with pitch pipe)
Team member name B

Instrument type

Senior?

- No electric or electronic parts
- No toys or professional instruments or their parts
- No purchased items: bells, whistles, mouthpieces, reeds, instrument strings, audio oscillators
- Energy supplied solely by student, no electricity
- Wind instrument family
- Built by student within the last year

/ 5 Play the lowest and highest notes. How many octaves?

1 Less than a fifth
2 An octave or less
3 Less than 2 octaves
4 Two octaves
5 More than 2 octaves

/ 5 Sound quality compared to standard instruments:

0 No sound at all
1 Pathetic
2 Poor
3 Adequate
4 Pretty good
5 Sounds like the standard instrument (or better), and in standard tune (check with pitch pipe)

Theory

Ask questions as necessary to establish their understanding of music science. (30 points total; either student can answer)

/ 6 What is sound, and how do your instruments produce it? (Full-credit answer must mention vibration and resonance)

/ 4 How do you change the pitch?

/ 2 How do you change the volume?

/ 5 Show two waveforms with different amplitude. How do they sound different?
Show two waveforms with different frequency. How do they sound different?

If \(A_4 \) is 440 Hz, what is the frequency of \(A_3 \)?

If \(C_4 \) is 256 Hz, what note is three times that frequency?

Team performance (3 minutes total)

Points are assigned on overall musical quality and how well the members play together.

Difficulty.

1. Tune? What tune?
2. *Mary had a little lamb*
3. Simple tune
4. Adequate tune
5. Challenging
6. *Flight of the Bumblebee* or harder

Quality of written notation

0. Useless
1. Illegible
2. Poor
3. Adequate
4. Attractive
Team scoring

Evaluate the instrument designs, performances, and the team’s understanding of theory as a whole:

/ 10 Originality/creativity

0–4 Fundamental design flaws
5 Decent copies of an existing design in the same material
10 Would require all of: novel or unique materials (2); novel or unique design (3)

/ 10 Variety

5 Same instrument, about the same range
7 Same instrument, different ranges
8 Different instrument families (e.g., flute vs. reed), similar ranges
10 Different ranges and families

/ 10 Workmanship

0–4 Did not survive the demonstration in working order
5 Ugly but it worked
10 Would require all of: high quality materials (1); beautiful fabrication and finish (3); decorative touches (1)

______________________________ Judge’s signature