2 Derivative Algorithms

Three algorithms are provided to compute the derivative \(\frac{d\Delta p}{d(\ln\Delta t)} \). These are (with increasing complexity): (i) two-points, (ii) three-consecutive-points, and (iii) three-smoothed-points method.

2.1 Two-Points Method

This method computes the logarithmic derivative at point-\(j \) from the two neighboring points, the point before \((j-1)\) and the point after \((j+1)\), see Fig. 2.1. The formula is

\[
\left(\frac{d\Delta p}{d(\ln\Delta t)} \right)_j = \frac{\Delta p_{j+1} - \Delta p_{j-1}}{\ln(\Delta t_{j+1}) - \ln(\Delta t_{j-1})} = \frac{\Delta p_{j+1} - \Delta p_{j-1}}{\ln(\Delta t_{j+1}/\Delta t_{j-1})}, \quad j \geq 2,
\]

where
- \(\Delta p \) = pressure change; \(p_i - p_{wfs}(\Delta t) \) for drawdown; \(p_{ws}(\Delta t) - p_{wfs} \) for buildup,
- \(p_i \) = initial reservoir pressure,
- \(p_{wfs} \) = well flowing pressure for drawdown; \(p_{ws} \) = well flowing pressure at the time of shut-in for buildup,
- \(\Delta t \) = elapsed time; \(\Delta t_{sh} \) = shut-in time, or Horner time, or Agarwal equivalent time, or superposition time for buildup,
- \(j \) = data point index.

Note that \(\ln(\Delta t_{j+1}/\Delta t_{j-1}) \) is always positive since \(\Delta t_{j+1} \) is always greater than \(\Delta t_{j-1} \). The computed derivative will never be negative unless \(\Delta p_{j+1} \) is smaller than \(\Delta p_{j-1} \).

Fig. 2.1 - Derivative Algorithms - 2-Points and 3-Consecutive-Points.
2.2 Three-Consecutive-Points Method

This method uses one point before and one point after the point of interest, point-j, calculates the corresponding derivatives, and places their weighted mean at the point considered [Bourdet et al., 1989], see Fig. 2.1. The formula is

$$
\left(\frac{d\Delta p}{d \ln \Delta t} \right)_j = \frac{\Delta p_j - \Delta p_L}{\ln(\Delta t_i) - \ln(\Delta t_L)} \frac{\ln(\Delta t_R) - \ln(\Delta t_j)}{\ln(\Delta t_R) - \ln(\Delta t_L)} + \frac{\Delta p_R - \Delta p_j}{\ln(\Delta t_R) - \ln(\Delta t_i)} \frac{\ln(\Delta t_R) - \ln(\Delta t_j)}{\ln(\Delta t_R) - \ln(\Delta t_L)}, \quad j \geq 2,
$$

$$
= \frac{\Delta p_j - \Delta p_L}{\ln(\Delta t_i / \Delta t_L)} \frac{\ln(\Delta t_R / \Delta t_j)}{\ln(\Delta t_R / \Delta t_L)} + \frac{\Delta p_R - \Delta p_j}{\ln(\Delta t_R / \Delta t_j)} \frac{\ln(\Delta t_R / \Delta t_L)}{\ln(\Delta t_R / \Delta t_L)}, \quad j \geq 2,
$$

where

$L = j-1$, left to point-j,

$R = j+1$, right to point-j.

The above definitions of L and R means that three consecutive points are used in this method.

2.3 Three-Smoothed-Points Method

This method basically is the same as the previous three-consecutive-points method (i.e., same formula) but different in that the point-L and point-R chosen may not be consecutive. Determination of point-L and point-R, depends on the specification of a "window width W" ($W \geq 0$) with W refers to a length of $\ln \Delta t$ or natural logarithmic of other time functions. The algorithm chooses point-L and point-R as being the first ones such that

$$
[\ln(\Delta t_j) - \ln(\Delta t_L)] = \ln(\Delta t_j / \Delta t_L) > W, \text{ and}
$$

$$
\ln(\Delta t_R) - \ln(\Delta t_j) = \ln(\Delta t_R / \Delta t_j) > W,
$$

(i.e., just beyond the window width), see Fig. 2.2. Common values of W are 0 up to 0.5 in extreme cases [Bourdet et al., 1989]. Note that $W=0$ is equivalent to the three-consecutive-points described previously. The primary intention of this method is to reduce noise. A compromise, however, must be made between the smoothness of the derivative and the possible distortion resulted from over-smoothing.

2.4 Relation Between Two-Points and Three-Points Methods

The three-points methods (both consecutive and smoothed) reduce to the two-points method if

$$
\frac{\ln(\Delta t_R / \Delta t_I)}{\ln(\Delta t_I / \Delta t_L)} = \frac{\ln(\Delta t_j / \Delta t_L)}{\ln(\Delta t_R / \Delta t_j)},
$$

which is equivalent to

$$
\Delta t_j / \Delta t_L = \Delta t_R / \Delta t_I, \text{ or } \Delta t_j = \sqrt{\Delta t_I (\Delta t_R)}.
$$

Thus the three-points method is equivalent to the two-points method if the ratios of the succeeding chosen Δt's are the same.
2.5 Example

Consider the Δp and Δt data given in the first three columns of the following table. The pressure derivatives at data point 3 computed by the discussed three methods are also given in the same table. Detailed procedures are given following the table.

<table>
<thead>
<tr>
<th>Data Point j</th>
<th>Elapsed Time Δt (hours)</th>
<th>Pressure Change Δp (psi)</th>
<th>$\ln(\Delta t_j/\Delta t_R)$ (Absolute Value)</th>
<th>$d\Delta p/d(\ln\Delta t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Two-Points Method</td>
</tr>
<tr>
<td>1</td>
<td>0.09583</td>
<td>71.95</td>
<td>0.23181</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.10833</td>
<td>80.68</td>
<td>0.10920</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.12083</td>
<td>88.39</td>
<td>0</td>
<td>79.17</td>
</tr>
<tr>
<td>4</td>
<td>0.13333</td>
<td>97.12</td>
<td>0.09844</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.14583</td>
<td>104.24</td>
<td>0.18806</td>
<td></td>
</tr>
</tbody>
</table>