Sample problems for Exam 3.

1. Sketch the region of integration and evaluate the integral

\[\int_0^2 \int_{y/2}^1 ye^{x^3} \, dx \, dy \]

2. Set up the integral for the volume \(V \) of the solid \(T \) bounded by the planes \(z = 6 \) and \(z = 2y \) and by the parabolic cylinders \(y = x^2 \) and \(y = 2 - x^2 \). (Set up, do not evaluate.)

3. Find the area of the region \(R \) bounded on the inside by the circle \(r = 1 \) and on the outside by \(r = 2 + \cos \theta \).

4. Find the volume bounded by paraboloids \(z = x^2 + y^2 \) and \(z = 4 - 3x^2 - 3y^2 \).

5. Set up the integral for the mass \(m \) of the pyramid \(T \) whose vertices are \(O(0, 0, 0), P(2, 0, 0), Q(0, 3, 0) \) and \(R(0, 0, 6) \), if its density is given by \(\delta(x, y, z) = z \). (Set up, do not evaluate.)

6. Let \(T \) be the first-octant (i.e. for \(x \geq 0, y \geq 0, z \geq 0 \)) portion of the solid ball with constant density \(\delta \equiv 1 \) bounded by the sphere \(x^2 + y^2 + z^2 = 4 \). Find \(z \)-component of the centroid of \(T \). (Hint: you may use the fact that the volume of the sphere with radius \(a \) is \(4\pi a^3 / 3 \).)

7. Find the surface area of the part of the cylinder \(x^2 + z^2 = 2 \) that lies within the cylinder \(x^2 + y^2 = 2 \).

8. Sketch the region of integration and evaluate the integral by using polar coordinates:

\[\int_0^1 \int_0^{\sqrt{1-y^2}} \frac{1}{1 + x^2 + y^2} \, dx \, dy \]

9. Solve the initial value problem

\[\frac{dy}{dx} = y^2 + 1, \quad y(1) = 0 \]

10. Solve the initial value problem

\[y'' + 2y' + 5 = 0, \quad y(0) = 1, y'(0) = 1 \]
Answers:

1. $\frac{2}{3}(e - 1)$

2. $\int_{-1}^{1} \int_{x^2}^{2-x^2} (6 - 2y) \, dy \, dx$

3. $\frac{7}{2}\pi$

4. 2π

5. $m = \int_{0}^{2} \int_{0}^{\frac{6-3z}{2}} \int_{0}^{6-3x-2y} z \, dz \, dy \, dx$

6. $3/4$

7. 16

8. $\frac{\pi}{4}\ln 2$

9. $\tan(x - 1)$

10. $e^{-t}(\cos 2t + \sin 2t)$

NOTE: The answers have been carefully checked, however, errors are still possible!