Mineral Engineering

Professor Chávez, Fakhimi, N. Mojtabai (Chair of the Department)
Assistant Professor Razavi
Adjunct Faculty, Gundiler, Kozushko, Kuhn, McLemore, Wimberly, Walder
Emeritus Professor Oravec, Aimone-Martin

Degrees Offered: B.S. in Mineral Engineering; B.S. in Mineral Engineering with Emphasis in Explosives Engineering; M.S. in Mineral Engineering

Department Mission Statement

• To provide the students with an education in the fundamentals of engineering that will allow immediate entry into industry or research work while providing a good opportunity for continued professional growth.
• To maintain a team of faculty who are committed to providing high quality of teaching and research.
• To prepare the students for the challenges of establishing a successful diversified career in the rapidly changing professional environment.

Program Educational Objectives

1) To inspire, as a primary goal, creativity in thinking and skills in problem solving to assist industry in meeting daily challenges
2) To develop a responsible professional with a sense of social awareness
3) To promote excellence in independent and open-ended engineering problem solving, oral and written presentation skills
4) To provide proficiency in basic science and engineering skills
5) To provide real-world experiences through summer jobs and field trips to operations in New Mexico as well as other states and countries for immediate entry into industry
6) Program graduates will achieve a measurable advancement in professional duties and salaries and be capable of demonstrating continued professional growth within the first seven years after graduating

Mineral engineering is concerned with the exploration for and development of minerals and earth materials in the most efficient manner while protecting the environment. The undergraduate program is oriented toward developing the student’s understanding of, and skill in, engineering design. Proficiency in project management and leadership are encouraged through coursework and projects that emphasize professional-quality written and oral communication skills. The objective of the program is to provide the student with an education in the fundamentals of engineering that will allow immediate entry into industry or research work while providing a good opportunity for continued professional growth. Emphasis is placed on developing a responsible professional with a sense of social awareness.

The curriculum includes basic engineering principles that provide the foundation for applied engineering design concepts. The program provides a concentrated study in mechanics, mineral evaluation and economics, ground and environmental control, environmental issues, and project management. Engineering design is introduced in courses covering surface and underground mining, ventilation, mineral processing, equipment selection, drilling and blasting, soil and rock mechanics, hydraulic structures, and geomechanics. Instruction in the environmental aspects of minerals development and production include mine permitting and reclamation, extending to the legal issues and concerns in natural resources development.

A large-scale design project is undertaken in the senior year. This project integrates engineering principles and design in one of three areas: economic evaluation and exploration for mineral properties; design and planning of a mining project; or the planning and implementation of geotechnical construction projects, such as landfills, tailings impoundments, earth dams, and structures.

The department has modern well-equipped laboratories for instruction and research in soil and rock mechanics, ventilation, blast vibrations, mineral evaluation, and computer applications. The department also maintains its own experimental underground mining facility to allow students valuable hands-on experience in solving mineral engineering problems. Students are provided the opportunity to work on a wide range of applied research projects within both the department and the Institute. Students are encouraged to obtain summer jobs available in mines across the Southwest, providing excellent industrial experience.

Undergraduate Program

Bachelor of Science in Mineral Engineering

Minimum Credit Hours Required – 132

In addition to the General Education Core Curriculum (page 87), the following courses are required:

• MATH 231 (4), 335 (3)
• ES 110 (2), 111 (3), 201 (3), 216 (3), 302 (3), 332 (3), ES 303 or 347
• ERTH 101 & 103L, 203 (4)
• Technical Elective (3)

All engineering majors are required to take the
Fundamentals in Engineering (FE) exam as a requirement for graduation.

Bachelor of Science in Mineral Engineering with Emphasis in Explosives Engineering

Minimum credit hours required—141

In addition to the General Education Core Curriculum (page 87), the following courses are required:

- MATH 231 (4), 335 (3)
- ES 110 (2), 111 (3), 201 (3), 216 (3), 302 (3), 332 (3), ES 303 or 347 (3)
- ERTH 101 & 103L (4), 203 (4)
- Technical Elective (3),
- Three courses from: ChE 475 (3), ME 434 or ME 535 (3), MENG 441 (3), ME 545 (3), MENG 545 (3)

Students are strongly encouraged to do their senior design project in the area of Explosive Engineering or related projects

Minor in Mineral Engineering

Minimum credit hours required—19

Chosen from the following courses:

ME 220 (3), ME 320 (2) or ES 216 (3), ME 340 (3), ME 360 (3), ME 380 (6), ME 410 (3), ME 419 (2), ME 420 (3), ME 422 (3), ME 435 (3), ME 440 (2), ME 442 (4), ME 462 (3)

Sample Curriculum for the Bachelor of Science in Mineral Engineering

Semester 1

1. ME 101 (intro)
2. ES 110 (intro)
3. MATH 131 (calculus)
4. CHEM 121 & 121L (general)
5. ENGL 111 (college English)
6. Required—19

18 Total credit hours

Semester 2

1. ME 101 (intro)
2. MATH 132 (calculus)
3. CHEM 122 & 122L (general)
4. ENGL 112 (college English)
5. Social Science/Humanities

17 Total credit hours

Semester 3

1. ME 170 (dynamics)
2. CHM 131 (chemistry)
3. MATH 231 (calculus)
4. ES 201 (statics)
5. Social Science/Humanities

15 Total credit hours

Semester 4

1. ME 201 (structural)
2. MENG 341 (technical writing)
3. ES 216 (fluids)

17 Total credit hours

Semester 5

1. ME 220 & 220L (surveying and map preparation)
2. ME 320 (economic analysis)
3. ME 340 (mineral evaluation)
4. ME 360 (exploration and field mapping)
5. ME 380 (mine systems)
6. ME 390 (soil mechanics)
7. ME 392 (mineral deposits)
8. ME 545 (3)
9. Required—19

18 Total credit hours

Semester 6

1. MATH 335 (applied analysis)
2. Technical Elective
3. ME 440 (mine ventilation)
4. Social Science/Humanities

15 Total credit hours

Semester 7

1. ME 471 (senior design I)
2. ME 410 & 410L (environmental issues)
3. MATH 335 (applied analysis)
4. Technical Elective
5. ME 440 (mine ventilation)
6. Social Science/Humanities

15 Total credit hours

Semester 8

1. ME 419 (mineral and natural resource law)
2. ME 442 & 422L (applied geomechanics)
3. ME 471 (senior design II)
4. ES 332 (electrical engineering)
5. Social Science/Humanities

17 Total credit hours
Graduate Program

Master of Science in Mineral Engineering

Admission to the Master of Science in Mineral Engineering program requires competence in mathematics, chemistry, physics, and engineering science comparable to the bachelor of science degree in mineral engineering. Applicants without an engineering degree may apply for the graduate program in Mineral Engineering. However, the student will be required to take ES 201, ES 302, and ME 420. Any other deficiencies may have to be covered as required by the advisory committee.

The student’s course of study must be approved by the student’s advisory committee and fulfill the general requirements for the master’s degree.

Of the 30 hours required for the M.S. degree, a minimum of 12 credit hours must be in approved Mineral Engineering courses. All graduate students must complete at least one credit of ME 572 (graduate seminar). Under special consideration, a student may petition the advisory committee with approval of the Department Chair to pursue a Master of Science degree with Independent Study (three hours of ME 590). A formal paper will be submitted with an oral presentation to the advisory committee.

The student may select one area of specialization as outlined below; within each specialization, recommended courses are provided.

Specialization in Mineral Exploration

At least 12 credits selected from ME 511, ME 521, ME 522, ME 523, ME 551, ME 562, ME 563. Other courses can be substituted with the approval of the research advisor and committee.

Specialization in Geotechnical Engineering

At least 12 credits selected from ME 506, ME 508, ME 512, ME 515 or MENG 515, ME 517 or MENG 517, ME 520, ME 525, ME 531, ME 532, ME 543, ME 535, ME 537, ME 540. Other courses can be substituted with the approval of the research advisor and committee.

Specialization in Explosive Engineering

At least 12 credits selected from ME 534, ME 545, ME 546, or MENG 546, ME 548, ME 549 or MENG 549, ME 550 or MENG 550, ME 553 or MENG 553. Other courses can be substituted with the approval of the research committee and the department.

Mineral Engineering Courses:

ME 101, Introduction to Mineral Engineering, 1 cr, 1 cl hr

The fundamentals of geology and mineral resource exploration and development applied to engineering. The role of the mineral engineer in mining, exploration, and geotechnical engineering. Field trips to mining and construction operations as well as guest speakers from industry, government, and research.

ME 215, Health and Safety, 2 cr, 2 cl hrs

Offered on demand

The roles of health and safety in the construction, operation, and maintenance of extractive mineral facilities. Federal and state health and safety codes. Laboratory and field work.

ME 220, Surveying and Map Preparation, 3 cr, 2 cl hrs, 3 lab hrs

Prerequisites: MATH 131, ES 111

Surveying instruments and measurement techniques. Data acquisition by means of advanced surveying methods for map production. Layout design and measurements. Correlations of surface and underground surveys.

ME 315, Mining Lab, 2 cr, 1 cl hr, 2 lab hrs

Prerequisite: Consent of instructor

Offered on demand

An introduction and hands-on experience in underground mine work: health and safety, support placement, mucking, dewatering, mapping and surveying. All classes are held at the department’s experimental mine (Waldo mine).

ME 320, Economic Analysis, 2 cr, 2 cl hrs

Corequisite: MATH 131

Economic principles applied to decision-making problems in mineral engineering. Compound interest, depreciation, present worth and rate of return pertinent to project evaluation.

ME 340, Geostatistics and Mineral Evaluation, 3 cr, 2 cl hr, 2 lab hrs

Prerequisites: ES 111; ME 320

Introduction to statistics. Obtaining, evaluating, and presenting mineral resource information. Ore reserves estimation using geometric weighting techniques and geostatistical methods. The use of computers is emphasized.
ME 360, Exploration and Field Mapping, 3 cr, 2 cl hrs, 3 lab hrs
Prerequisites: ERTH 203; ME 220
Corequisite: ENGL 341
The acquisition and presentation of field geological data applied to engineering site characterization and mineral exploration. Data presentation. Elements of exploration techniques including field applied mineralogy, geophysics, structural geology, geochemistry, drilling and sampling, and mapping. Laboratory reports and oral presentations.

ME 380, Mine Systems, 6 cr, 4 cl hrs, 6 lab hrs
Prerequisite: ME 340, ME 320, or ES 316
Surface and underground mining methods and design; drilling and blasting design; materials handling and equipment selection. Concepts of mine plant design. Emphasis on computer applications.

ME 409, Design of Structures, 3 cr, 2 cl hrs, 3 lab hrs
Prerequisite: ES 302
Offered on demand
Reinforced concrete; concrete design, beams, slabs, retaining walls, columns, and footings. Grouting and shotcreting. Structural steel design: tension members, beams, columns, bolted and welded connections, frames, and trusses. Rock bolting, Rigging, PC applications. Student presentations on selected topics. A design project is required.

ME 410, Environmental Issues, 3 cr, 3 cl hrs
Prerequisites: ME 380; ES 216
Corequisite: ME 442
Mine waste characteristics; regulations affecting mine operations; site selection, design and stability analysis of tailings impoundments. Water quality issues and control in mining. Mine waste management. Mine permitting requirements and reclamation. Design projects.

ME 419, Legal Aspects of Mineral Engineering, 2 cr, 2 cl hr
Prerequisite: Senior standing or consent of instructor
A comprehensive study of laws pertaining to the exploration, planning, and development for resource extraction including minerals and water. Mineral and water rights issues will be presented and debated. A case study paper will be presented.

ME 420, Soil Mechanics, 3 cr, 2 cl hrs, 3 lab hrs
Prerequisites: ES 302, ES 216
Phase relationships, soil classification, clay mineralogy, compaction, flow of water in soils, seepage, effective stress, Mohr circle, stress-strain relationships and failure criteria, Mohr-Coulomb failure criterion, shear strength, consolidation, and consolidation settlement.

ME 421, Applied Economic Geology, 3 cr, 2 cl hrs, 3 lab hrs
Prerequisite: ERTH 203
Offered on demand
Lithologic and lithochemical characterization of metalliferous ore deposits through the use of ore and alteration sample suites collected from various classes of deposits. Identification of hand specimen mineralogy; thin section and polished section analyses to establish paragenesis of both ore and gangue mineralization. Theoretical considerations ascertained by use of appropriate phase diagrams. Interpretation of wallrock alteration and characteristics of mineral paragenesis for major ore deposit types. Design and implementation of mineral exploration using field and laboratory observations.

ME 422, Rock Mechanics, 3 cr, 2 cl hrs, 3 lab hrs
Prerequisites: ES 302
Mechanical properties of intact rock and rock masses, classification of rock masses for engineering purposes, rock failure criteria, in situ stress measurement techniques, rock deformability. Labs consists of sample preparation, point load test, Brazilian test, Uniaxial test, and Triaxial test.

ME 427, Site Investigation, 3 cr, 2 cl hrs, 3 lab hrs
Prerequisite: ME 420
Offered on demand
Design of engineering site investigation for project planning and construction; acquisition, presentation, and interpretation of geologic field data for engineering design. Design concepts for rock and soft ground tunneling, rock slopes, tailings dams, landslides, ground subsidence, collapsible and swelling soils. Computer-aided data reduction and design.

ME 434, Drilling and Blasting Engineering, 3 cr, 3 cl hrs
Prerequisite: ES 302
Offered on demand
Introductory course in the application of explosives to rock fragmentation; theory of detonation and mechanisms of rock failure, dynamics, and propagation. The effects of rock properties on breakage. Blasting systems and production blasting techniques used in both surface and underground designs; environmental considerations and regulations. Principles of blasthole drilling and drill performance. Drilling and blasting economics.
ME 435, Mineral Processing, 3 cr, 3 cl hrs, 2 lab hrs
Prerequisites: ME 380; ES 216
Theory and practice of concentration of ores and industrial minerals. Crushing, grinding, sizing, gravity separation, flotation, leaching, solid-liquid separations.

ME 440, Mine Ventilation, 2 cr, 2 cl hrs
Prerequisite: ME 380; ES 216
Control of underground environmental problems; dusts, gases, temperature, and humidity. Analysis of natural and mechanical ventilation systems and equipment. Measurement techniques.

ME 442, Applied Geomechanics, 4 cr, 3 cl hrs, 3 lab hrs
Prerequisite: ME 420
Analysis and design of structures and excavations in geological media on surface and underground. Support and reinforcement design. Geological hazards and remedial measures. Design projects.

ME 462, Mineral Deposits, 3 cr, 2 cl hrs, 2 lab hrs
Prerequisite: ERTH 203
Ore formation processes and ore mineralogy; geologic and geochemical characterization of ore deposits using hand specimen, petrographic, and field mapping techniques. Visits to prospects and operating mines to observe variations in ore deposit characteristics to document geologic and geochemical parameters used to describe ore-forming systems. (Same as ERTH 462)

ME 470, Senior Design I, 1 cr, 1 cl hr
Prerequisites: Senior standing and consent of instructor
Initiation of senior design project including written and oral project proposal; estimation of project design requirements and costing. Preliminary data acquisition and evaluation. Design topics are selected from mineral exploration, mine or geotechnical engineering.

ME 471, Senior Design II, 2 cr, 2 cl hrs
Prerequisite: ME 470 passed with a grade of “C” or better.
Continuation of design projects initiated in ME 470; implementation and evaluation of design details including cost analysis. Preparation of final project report with written and oral professional-style presentations.

ME 491, Directed Study, 1–4 cr as arranged
Special projects or topics in mining or geological engineering.

ME 500, Directed Research, cr to be arranged
This course may not be used to fulfill graduate degree requirements.
Research under the guidance of a faculty member.

ME 505, Graduate Seminar, 1 cr

ME 506, Soil Mechanics, 3 cr, 2 cl hrs, 3 lab hrs
Prerequisites: Consent of instructor
Phase relationships, soil classification, clay mineralogy, compaction, flow of water in soils, seepage, effective stress, Mohr circle, stress-strain relationships and failure criteria, Mohr-Coulomb failure criterion, shear strength, consolidation, and consolidation settlement.

ME 508, Rock Mechanics, 3 cr, 2 cl hrs, 3 lab hrs
Prerequisites: consent of instructor
Mechanical properties of intact rock and rock masses, classification of rock masses for engineering purposes, rock failure criteria, in situ stress measurement techniques, rock deformability. Labs consists of sample preparation, point load test, Brazilian test, Uniaxial test, and Triaxial test.

ME 511, Mineral Economics, 3 cr, 3 cl hrs
Prerequisite: ES 316 recommended, or consent of instructor
Domestic and international mineral statistics, marketing, trade, conservation, and taxation. Energy economics. Labor economics. Economic calculations for feasibility studies on mineral properties. Participants prepare and present professional-style reports on international mineral development.

ME 512, Advanced Rock Mechanics, 3 cr, 2 cl hrs, 3 lab hrs
Prerequisite: ME 420 or consent of instructor

ME 515, Theory of Elasticity, 3 cr, 3 cl hrs
Prerequisite: Graduate standing or consent of the instructor
An introduction to tensor analysis, analysis of stress, balance laws, infinitesimal and finite theories of motion, strain and rotation tensors, compatibility equations, constitutive equations, materials symmetry, uniqueness of the solution, solution of two-dimensional elasticity problems. Airy stress function, application of complex variable technique in elasticity, three-dimensional elasticity problems, energy methods, bending theory of plates. (Same as MENG 515)
ME 517, Advanced Finite Element Method, 3 cr, 3 cl hrs

Prerequisite: Graduate standing or consent of the instructor

An introduction to the numerical analysis calculus of variation, weak form of a differential equation, weighted residual techniques, solution of one-dimensional problems by the finite element method, bending problems, Lgrange and Hermite interpolation functions, isoparametric elements, numerical integration, two-dimensional problems, solution of Poisson and Laplace equations, triangular and quadrilateral elements, elasticity problems, theorem of minimum potential energy stiffness matrix, examples. (Same as MENG 517)

ME 520, Fracture Mechanics, 3 cr, 3 cl hrs

Prerequisite: Graduate standing or consent of the instructor

An introduction to the theory of elasticity, singular stress fields, Westergaard method, complex variable technique, stress intensity factor, fracture energy, numerical and experimental methods in determination of stress intensity factor, fracture toughness, J-integral Elasto-plastic fracture. (Same as MENG 520)

ME 521, Advanced Minerals Exploration, 3 cr, 3 cl hrs

Prerequisite: ME 360 or consent of instructor

Practical application of geologic, geochemical, and geophysical exploration techniques to ore search. Remote sensing technology and integration into grassroots exploration programs. Recent developments in geophysical and geochemical prospecting. Case histories. Field application of mineral exploration techniques.

ME 522, Advanced Mineral Exploration Field Mapping, 3 cr, 2 cl hrs, 2 lab hrs

Prerequisite: ME 360 or consent of instructor

Detailed mapping of mineral deposits and prospects in collaboration with professional exploration geologists and engineers with application to minerals exploration. Design and implementation of orientation surveys. Field studies will include geochemical and geological laboratory analysis. Written reports and oral presentation of projects will be reviewed by professionals.

ME 523, Ore Petrography, 3 cr, 3 cl hrs

Prerequisite: EERTH 203 or consent of instructor

Identification and description of opaque and semi-opaque minerals using polished sections complemented by reflected-light petrographic techniques. Sampling techniques for exploration, mining, and environmental remediation purposes. Preparation of polished samples from rock, rock chip, ore concentrate, and tailings sample types. Heavy liquid separation techniques for concentration of heavy minerals and quantitative mineral analyses.

ME 525, Rock and Soil Plasticity, 3 cr, 3 cl hrs

Prerequisite: Graduate standing or consent of the instructor

Introduction to the theory of elasticity, Tresca, Von Misses and Mohr-Coulomb failure criteria, flow rule, hardening, softening and perfect plasticity, method of characteristics in solving plasticity problems, kinematics and velocity discontinuity, plastic limit analysis, upper- and lower-bound theorems, examples in soil and rock mechanics.

ME 531, Advanced Foundation Design and Analysis, 3 cr, 3 cl hrs

Prerequisite: ME 420 or consent of instructor

ME 532, Advanced Soil Mechanics, 3 cr, 2 cl hrs, 3 lab hrs

Prerequisite: ME 420 or consent of instructor

Advanced laboratory testing of soils and their behavior with special attention to problem soils. Lab testing will include but not be limited to direct shear, compaction, swell consolidation, and seepage analysis. Special projects may be selected.

ME 534, Advanced Drilling and Blasting Engineering, 3 cr, 3 cl hrs

Prerequisite: Graduate standing or consent of the instructor

Application of explosives to rock fragmentation; theory of detonation and mechanisms of rock failure, dynamics, and propagation. The effects of rock properties on breakage. Blasting systems and production blasting techniques used in both surface and underground designs, environmental considerations and regulations. Principles of blasthole drilling and drill performance. Drilling and blasting economics.

ME 535, Stability of Rock Slopes, 3 cr, 2 cl hrs, 3 lab hrs

Prerequisite: ME 420 or consent of instructor

ME 537, Design and Construction of Underground Openings, 3 cr, 3 cl hrs
Prerequisite: ME 420 or consent of instructor

ME 540, Computer Application in Geotechnical Engineering, 3 cr, 3 cl hrs
Prerequisites: Soil Mechanics, Rock Mechanics, and basic computer skills
Computer programming using MATLAB, image processing and its applications in geotechnical engineering, introduction to finite difference and finite element methods with applications to various problems in geomechanics including steady seepage, consolidation, slope stability, design of foundations, and underground excavations.

ME 545, Vibration Analysis and Control, 3 cr, 3 cl hrs
Prerequisite: ME 434 or consent of instructor
Characteristics and analysis of vibrations from mining and construction blasting, heavy equipment and transient loads. Prediction of ground motions, air blast, and frequency; response spectra, structural response and damping. Damage analysis and prediction; probabilistic study of cracking. Human response. Vibration monitoring equipment and control.

ME 546, Detonation Theory, 3 cr, 3 cl hrs
Prerequisite: ES 545 or consent of instructor. Distance education students are required to have the consent of the instructor.
Development of classical detonation model for full-order detonation of secondary explosives. Ideal versus non-ideal detonation. Burn-rate models for pyrotechnics. The concept of deflagration to detonation transition. (Same as MENG 546)

ME 548, Rock Fracturing and Fragmentation by Explosives, 3 cr, 3 cl hrs
Prerequisite: Graduate or senior standing or consent of instructor
Fundamentals of dynamic rock strength, mechanisms of fracturing and fragmentation of rocks by explosives. Theoretical treatment of rock stress induced by internal explosion, methods for computer calculations of rock damage. Brief overview of devices, accessories, and methods used in industrial applications of fragmentation.

ME 549, Wave Propagation, 3 cr, 3 cl hrs
Prerequisite: MATH 335 or consent of instructor. Distance education students are required to have the consent of the instructor.
An in-depth study of the propagation of waves in various media. The derivation and application of the Rankine-Hugoniot jump equations. The concept of the rarefaction wave and various wave interactions. Derivation and application of the Mie-Gruneisen equation of state. The differential form of the conservation equations, as well as some numerical solutions for simple cases. (Same as MENG 549)

ME 550, Advanced Explosives Engineering, 3 cr, 3 cl hrs
Prerequisites: MENG 545; MATH 335; or consent of instructor. Distance education students are required to have the consent of the instructor.
The detonation of non-ideal explosives, equation of state for porous media, shaped charge effect and explosively formed projectiles. Shock compaction of powders, explosive welding and experimental methods used in the evaluation of explosives and their applications. The dynamic fracture of ductile and brittle materials. (Same as MENG 550)

ME 551, Industrial Minerals, 3 cr, 3 cl hrs
Prerequisite: Graduate standing or consent of instructor
Offered alternate years
Study of basic concepts of production and use of industrial minerals in modern society. Emphasis on complex interactions between economics, geology, processing, marketing, and transportation. Selected industrial minerals studies in detail. Several field trips to operations and occurrences. (Same as GEOL 551)

ME 552, Applied Explosives Engineering, 3 cr, 3 cl hrs
Prerequisite: Graduate or senior standing or consent of instructor
Commercial and other applications of explosives. Basics of thermal decomposition, explosion, shock initiation, and detonation. Laboratory methods of performance evaluation of explosives including shock initiation tests and underwater explosion tests. Techniques of forming and shaping of detonation waves. Some unusual applications of explosives in creating large magnetic fields.
ME 553, Computer Modeling of Detonations, 3 cr, 3 cl hrs
Prerequisite: MENG 545 or consent of instructor. Distance education students are required to have the consent of the instructor.
Introduction to hydrodynamic modeling applied to explosives. Numerical methods for modeling shock physics, detonation, and material response. Finite difference, finite element and smoothed particle hydrodynamic methods, equation of state and strength models, and numerical fracture and fragmentation. (Same as MENG 553)

ME 561, Advanced Topics in Engineering Geology, 3 cr, 3 cl hrs
Offered on demand
Study of special topics in geologic hazards, site characterization, and related fields of interest in engineering geology.

ME 562, International Mining Field Trip, 3 cr, 3 cl hrs
Field trip in conjunction with the Student Chapter of the Society of Economic Geologists to a geologic and mining interest in a foreign country, usually Chile. Seminar-style class with a required term paper. Students are responsible for preparation of a field-trip guidebook, to be used by students and professionals participating in the field trip.

ME 563, Field Studies in Hydrothermal Alteration, 3 cr, 3 cl hrs
Prerequisites: ERTH 211, 318 or 319 or equivalent; ME 360 or ERTH 480
A field and lab-based course emphasizing the geochemistry and mineralogy of hydrothermal ore deposits, with substantial hands-on exercises and field-based descriptive work. Lab exercises utilize thin section and polished section samples from hydrothermal ore deposit suites to demonstrate variations in protolith and alteration mineralogy, and result in the production of professional-style reports, interpreting the geochemical and exploration significance of the alteration assemblages observed. Field trips to mineral deposits emphasize the areal extent of hydrothermal alteration associated with porphyry, epithermal and skarn-style ore deposits.

ME 564, Economic Geology Field Camp, 1-4 cr to be arranged
Prerequisites: ERTH 353, ME 360 or equivalent
Field-based course emphasizing detailed mapping of mineral deposits and preparation of professional-style reports. Field areas comprise of distinct ore deposit settings, and involve description and recognition of rock types, alteration assemblages, and ore-related minerals, mapping in operating mines, and at prospects. Preparation of professional-style Executive Summary reports required. In autumn to be held in western U.S.; summer course to be held in western U.S. and in easter U.S. in alternate summers.

ME 565, Mine Waste Characterization, 3 cr, 3 cl hrs
Prerequisite: Consent of instructor

ME 566, Mine Waste Management and Control, 3 cr, 3 cl hrs
Prerequisite: ME 565
Control of wastewater and solid pollutants from mining and processing of minerals. Design of facilities to control and manage waste streams resulting from mine and mill operations. Mine land reclamation and closure design. Design projects and field trips.

ME 570, Advanced Topics in Explosives Engineering, 3 cr, 3 cl hrs
Prerequisite: ME 565
Study of special topics in the application of explosives in the fields of rock blasting, structure response to vibrations, and ordnance.

ME 571, Advanced Topics in Mineral Engineering, 2–3 cr

ME 572, Graduate Seminar, 1 cr, 2 cl hrs
Prerequisite: Graduate standing
Presentation and discussion of research ideas, including presentation of published papers.

ME 581, Directed Study, 1–3 cr

ME 590, Independent Study, cr to be arranged
Independent research organized and conducted by the student under the direction of the student’s advisor. Written final report and oral presentation required.

ME 591, Thesis (master’s program), cr to be arranged
Faculty Research Interests

Chávez—Applied Mineral Exploration, Ore Deposits, Natural Resource Utilization
Fakhimi—Geomechanics, Numerical Modeling
Gundiler—Hydrometallurgy and Mineral Processing
Kozushko—Mine Design, Support and Reinforcement Design, Underground Safety
McLemore—Economic Geology
N. Mojtabai—Site Investigation, Rock Fragmentation, Mine Design, Geomechanics
Razavi—Soil Mechanics, Image Processing, X-Ray computer Tomography
Oravecz—Rock Mechanics, Surveying
Walder—Geochemistry, Mine Reclamation, Mine Waste Characterization
C. Wimberly—Natural Resources Law