1. Evaluate \(\int \frac{x^2}{(4-x^2)^{3/2}} \, dx \).

2. Evaluate \(\int \cos^3 x \sin^2 x \, dx \).

3. Evaluate \(\int x \sec x \tan x \, dx \).

4. Evaluate \(\int \frac{x^2 + 8x - 3}{x^3 + 3x} \, dx \).

5. Evaluate \(\int \frac{dx}{x^2 \sqrt{x^2 + 1}} \).

6. Evaluate \(\int \tan^4 x \sec^2 x \, dx \).

7. Evaluate \(\int \frac{x^3 + 4x^2}{x^2 + 4x + 3} \, dx \).

8. Evaluate \(\int e^{-2x} \sin 3x \, dx \).

9. Find the area of the surface generated by revolving the curve \(y = \ln x \) from \(x = 1 \) to \(x = e \) about the \(y \)-axis.

10. The region in the first quadrant enclosed by the coordinate axis, the curve \(y = e^x \) and the line \(x = 1 \) is revolved about the \(y \)-axis to generate a solid. Find the volume of the solid.

11. Let \(R \) be the region in the first quadrant that is bounded above by the line \(y = 1 \), below by the curve \(y = \ln x \) and on the left by \(x = 1 \). Find the volume of the solid generated by revolving the region \(R \) about the \(x \)-axis.

12. Solve the initial value problem \(x \frac{dy}{dx} = \sqrt{x^2 - 4} \) for \(x \geq 2 \) where \(y(2) = 0 \).

13. Solve the initial value problem \(3x^4 + 4x^2 + 1 \frac{dy}{dx} = 2\sqrt{3} \) where \(y(1) = \frac{\pi \sqrt{3}}{4} \).