Civil Engineering

Associate Professors Cal (Chair of Department), Richardson
Assistant Professor Wilson
Adjunct Faculty Ghosh, Hendrickx, Kuhn

Degree Offered: B.S. in Civil Engineering; Areas of Specialization: Geotechnical, Water Resources, and Structural

Program Educational Objectives
1. To develop undergraduate student competence in the fundamentals of civil engineering and across a specialty area of structural, geotechnical or water resources engineering.
2. To prepare students in the general areas of logical analysis, critical thinking, rational design, and ethical engineering practice.
3. To prepare students for advanced education in civil engineering and related fields, and to prepare students for professional licensure.

The primary objective of this program is to produce a well-balanced civil engineer capable of entering the civil engineering profession or continuing studies at the graduate level. Graduates will be well-prepared to solve current civil engineering problems, and will have the ability to adapt to problems of the future.

The achievements of civil engineers are well-known to the general public, because civil engineers build the world’s infrastructure. In doing so, they can shape the history of nations. Projects that civil engineers work on include: airports, bridges, buildings, dams and waterways, drainage and sewer systems, city roads, and highways.

The undergraduate program offers a balanced approach to civil engineering education. Students take a common core of civil engineering courses, and can specialize in the areas of geotechnical, water resources, or structural engineering. The program is also designed to give students a solid foundation in engineering and science. Students take courses in chemistry, physics, and math, in addition to a core set of engineering courses common to most engineering disciplines. Our civil engineering courses teach students the fundamentals of engineering design, as well as potential applications. Students are taught how to use computer software to expedite the design process, and they are also taught how to balance engineering designs with economic constraints. During their senior year, undergraduate students work with a professor on a design project.

Undergraduate Program
Bachelor of Science in Civil Engineering

Minimum credit hours required—132
In addition to the General Degree Requirements (page 54), the following courses are required:

- CE 101 (1), 201 (3), 301 (3), 302 (3), 402 (3), 413 (3), 423(3), 481 (3)
- ES 316 (3)
- ES 110 (2), 111 (3), 201 (3), 216 (3), 302 (3)
- MATH 231 (4), 283 (3), 335 (3)
- ME 220 (3), 420 (4)
- MENG 300 (2), MENG 351 (1), 421 (3)
- Technical Electives (12): Minimum of 12 credit hours in a civil engineering specialty area. Civil engineering approved electives include:
 - Geotechnical (12): CE 420 (3), CE 422 (3), ME 360 (3), ME 409 (3), ME 427 (3), ME 434 (3), ME 442 (4)
 - Water Resources (12): ENVE 201 (3), ENVE 301 (3), ENVE 303(3), ENVE 304 (3), ENVE 406 (3), ERTH 440 (4), ERTH 441 (1), ERTH 442 (1), ERTH 443 (1)

Additional technical electives must be approved by the Department Chair.

Students pursuing a B.S. in Civil Engineering must take all engineering courses for a letter grade.

Civil engineering majors must maintain a minimum GPA of 2.0 in required courses in order to graduate. All engineering majors are required to take the Fundamentals in Engineering (FE) exam as a requirement for graduation.

Sample Curriculum for the Bachelor of Science Degree in Civil Engineering

Semester 1
1. CE 101 (civil engineering seminar)
2. CHEM 121 & 121L (general)
3. ENGL 111 (college English)
4. MATH 113 (calculus)
5. Social Science

Semester 2
1. CE 101 (civil engineering seminar)
2. CHEM 121 & 121L (general)
3. ENGL 111 (intro)
4. MATH 113 (calculus)
5. PHYS 121 & 121L (general)

Semester 3
1. CE 101 (civil engineering seminar)
2. CHEM 121 & 121L (general)
3. ENGL 111 (intro)
4. MATH 113 (calculus)
5. PHYS 121 & 121L (general)

Semester 4
1. CE 101 (materials, properties, and testing)
2. ES 110 (intro)
3. MATH 335 (ordinary differential equations)
4. ME 220 (surveying and map preparation)
5. Humanities / Social Science

Semester 5
1. CE 301 (construction engineering)
2. ENVL 341 (technical writing)
3. ES 302 (mechanics of materials)
4. MATH 283 (statistics)
5. Humanities
6. Social Science

Semester 6
1. CE 302 (structural engineering)
2. MENG 300 (mechanics lab)
3. MENG 351 (fluids lab)
4. MENG 421 (finite element analysis and design)
5. ME 420 (soil and rock mechanics)
6. Social Science

Semester 7
1. CE 406 (steel)
2. CE 408 (concrete)
3. CE 413 (foundation design & analysis)
4. CE Electives
5. Humanities

Semester 8
1. CE 402 (transportation engineering)
2. CE 423 (open channel hydraulics)
3. CE 481 (senior design)
4. CE Electives

15 Total credit hours
Approved Civil Engineering Electives

CE students must take a minimum of 12 elective credit hours in a specialty area

Water Resources Engineering
- 3 ENVE 201 (environmental engineering)
- 3 ENVE 301 (applied principles of environmental engineering)
- 3 ENVE 303 (water treatment process design)
- 3 ENVE 304 (wastewater treatment process design)
- 3 ENVE 406 (environmental engineering unit operations)
- 4 ERTH 440 (hydrological theory and field methods)
- 1 ERTH 441 (aerothermodynamics)
- 1 ERTH 442 (vadose zone processes)
- 1 ERTH 443 (atmospheric dynamics and rainfall processes)

Geotechnical Engineering
- 3 CE 420 (pavement design)
- 3 CE 422 (geotechnical waste containment design)
- 3 ME 360 (exploration and field mapping)
- 3 ME 409 (design of structures)
- 3 ME 427 (site investigation)
- 3 ME 434 (drilling & blasting)
- 4 ME 442 (applied geomechanics)

Structural Engineering
- 3 CE 410 (reinforced masonry and timber design)
- 3 CE 412 (advanced design of steel structures)
- 3 CE 414 (advanced design of concrete structures)
- 3 CE 418 (structural dynamics)
- 3 CE 420 (pavement design)
- 3 MENG 304 (advanced strength of materials)
- 3 MENG 441 (dynamics and vibrations in structural design)
- 3 ME 409 (design of structures)
- 3 ME 434 (drilling & blasting)

Additional technical electives must be approved by the Department Chair.

Minor in Civil Engineering

Minimum credit hours required – 18

The following courses are required:
- 18 credit hours of Civil Engineering courses

Civil Engineering Courses

CE 101, Civil Engineering Seminar, 1 cr, 1 cl hrs
Brief overview of civil engineering topics, including structures, water resources, geotechnical and transportation engineering in the form of seminars by faculty, and guest speakers from industry, consulting, and government.

CE 201, Construction Materials, Properties, and Testing, 3 cr, 3 cl hrs
Prerequisite: CHEM 122
Mechanical behavior of engineering materials, including metals, ceramics, polymers, concrete, wood, bitumens, and asphaltic concretes; explanations of macroscopic behavior in terms of phenomena at the microscopic level.

CE 301, Introduction to Construction Engineering, 3 cr, 3 cl hrs
Prerequisite: Junior standing
Topics covered include: contracting and bonding, planning and scheduling, estimating, project control, and productivity models.

CE 302, Introduction to Structural Engineering, 3 cr, 3 cl hrs
Prerequisites: ES 201, 302
Basic topics in the analysis, behavior, and design of trusses and framed structures under static loads; analysis topics include member forces in trusses, shear and moment diagrams, deflections, simple applications of the force method and slope–deflection; and an introduction to computer applications by means of a general purpose structural analysis program.

CE 402, Introduction to Transportation Engineering, 3 cr, 3 cl hrs
Prerequisite: CE 301 or consent of instructor
Introduction to the design, planning, operation, management, and maintenance of transportation systems. Principles for planning integrated multi-modal transportation systems (highways, air, rail, etc.). Introduction to the layout of highways, airports, and railroads with traffic flow models, capacity analysis, and safety. Functional design concepts for both the facilities and systems areas of study with life cycle costing procedures and criteria for optimization.

CE 406, Design of Steel Structures, 3 cr, 3 cl hrs
Prerequisite: CE 302 or consent of instructor
Behavior and design of steel members subjected to tension, compression and flexural loads, according to AISC specifications. Topics covered include: elastic and inelastic design, buckling of beams and columns, and structural connections.

CE 408, Design of Concrete Structures, 3 cr, 3 cl hrs
Prerequisite: CE 302 or consent of instructor
Behavior and design of reinforced concrete members, including beams, columns and slabs. Topics covered will include serviceability of beams and slabs, control of deflections and cracking, shear design, and bonding.

CE 410, Reinforced Masonry and Timber Design, 3 cr, 3 cl hrs
Prerequisite: CE 302 or consent of instructor
Reinforced masonry design topics covered include: the properties and performance of masonry materials; design criteria and methods in reinforced masonry; and design examples including reinforced masonry walls, masonry columns and pilasters, and rectangular beams. Timber topics covered include: design of beams, columns, trusses, and diaphragms in wood; design of gluelaminated beams; design of wood connections; use of timber design codes and the International Building Code (IBC).

CE 412, Advanced Design of Steel Structures, 3 cr, 3 cl hrs
Prerequisite: CE 406 or consent of instructor
Behavior and design of structural steel beams, columns, frames, and connections. Topics include: elastic and inelastic design, composite beam design, stability of beams and columns, behavior of steel frame structures, design of bolted and welded connections, metallurgical and mechanical properties of welds, braced frame and moment frame design for lateral loads. Extensive use of the current AISC-LRFD design code.

CE 413, Foundation Design and Analysis, 3 cr, 3 cl hrs
Prerequisite: CE 302 or consent of instructor
Principles of foundation engineering. Shear strength of soil. Theories related to design of retaining structures, shallow foundations, deep foundations, and slope stability.

CE 414, Advanced Design of Concrete Structures, 3 cr, 3 cl hrs
Prerequisite: CE 408 or consent of instructor
Topics covered include: strut and tie models, footings, retaining walls, principles of prestressed concrete, materials and techniques used in these systems, advantages and disadvantages of prestressing methods over regular reinforced concrete, and the design of prestressed concrete structures, such as axially loaded members, beams (for flexure and shear), and slabs.

CE 418, Structural Dynamics, 3 cr, 3 cl hrs
Prerequisites: Math 335 and CE 302 or consent of instructor
Fundamentals of structural dynamics. Analysis of single and multi-degree-of-freedom structures subjected to various types of vibrations. Topics covered will include structural responses to free, harmonic and periodic excitations, step and pulse excitations, and earthquake loads.

CE 420, Pavement Materials and Design, 3 cr, 3 cl hrs
Prerequisites: CE 201, CE 302
Analysis, behavior, performance, and structural design of pavements for highways, bridges and airfields. Topics include: climatic factors, maintenance strategies and life cycle design economics, traffic loadings, recycled pavement materials, evaluation by nondestructive testing (roughness, skid resistance, structural capacity), destructive testing, and rehabilitation of pavement systems.
Electrical Engineering

1. Graduates will be technically competent within the degree of Electrical Engineering. They will have the ability to synthesize and apply engineering knowledge and fundamentals to solving complex, real-world electrical engineering problems. They will demonstrate the ability to pursue lifelong learning in engineering, thus reinforcing and expanding on their engineering fundamentals and their depth and strength in mathematics and science.

2. Graduates will be prepared for professional practice in electrical engineering. They will have the ability to understand ethical and social choices inherent in the engineering profession and apply them in their daily practice of engineering. They will have the ability to work effectively in teams, through having the ability to communicate effectively, both orally and in writing; and they will appreciate the importance of encouraging the best in others.

Undergraduate Program

The Department of Electrical Engineering concentrates on a high-quality undergraduate program in electronics and design, combined with a firm intellectual foundation in the fundamentals of circuits, signals, and systems. As with other degree programs at Tech, students are also provided with a breadth of knowledge in the basic sciences, mathematics, humanities, and social sciences.

Laboratories constitute an important part of the electrical engineering program. The laboratories are closely coupled with the lecture parts of courses and utilize modern, state-of-the-art equipment. Personal computer-based instruments and software packages provide students with up-to-date engineering and design techniques.

Design is integrated into all aspects of the curriculum. Students take an “Introduction to Design” course in the second semester of their junior year. This and their other course work prepare students for two Senior Design Project courses, in which students apply material learned in the classroom to real-world problems. Projects are available from the greater Tech community, including Tech research labs, Langmuir Laboratory for Atmospheric Research, the Energetic Materials Research and Testing Center, and the VLA and VLBA facilities of the National Radio Astronomy Observatory.

Five-year programs are available in which students obtain dual degrees in electrical engineering and in related fields such as computer science, physics, or mathematics.

Graduates of Tech’s electrical engineering program will be well equipped with the practical skills necessary for immediate employment, as well as with the intellectual base for graduate studies and lifelong learning.