THE GROSS-ZAGIER FORMULA ON SINGULAR MODULI FOR
SHIMURA CURVES

ANDREW PHILLIPS

Abstract. The Gross-Zagier formula on singular moduli can be seen as a calculation of the intersection multiplicity of two CM divisors on the integral model of a modular curve. We prove a generalization of this result to a Shimura curve.

1. Introduction

In this paper we study a moduli problem involving false elliptic curves with complex multiplication (CM), generalizing a theorem about the arithmetic degree of a certain moduli stack of CM elliptic curves. This moduli problem is the main arithmetic content of [10]. The result of that paper can be seen as a refinement of the well-known formula of Gross and Zagier on singular moduli in [7]. We begin by describing how the Gross-Zagier formula and the result of [10] can be interpreted as statements about intersection theory on a modular curve. Our generalization of [10] has a similar interpretation as a result about intersection theory, but now on a Shimura curve.

1.1. Elliptic curves. Let \(K_1 \) and \(K_2 \) be non-isomorphic imaginary quadratic fields and set \(K = K_1 \otimes \mathbb{Q} K_2 \). Let \(F \) be the real quadratic subfield of \(K \) and let \(\mathcal{O} \subset \mathcal{O}_F \) be the different of \(F \). We assume \(K_1 \) and \(K_2 \) have relatively prime discriminants \(d_1 \) and \(d_2 \), so \(K/F \) is unramified at all finite places and \(\mathcal{O}_{K_1} \otimes \mathbb{Z} \mathcal{O}_{K_2} \) is the maximal order in \(K \).

Let \(\mathcal{M} \) be the category fibered in groupoids over \(\text{Spec}(\mathcal{O}_K) \) with \(\mathcal{M}(S) \) the category of elliptic curves over the \(\mathcal{O}_K \)-scheme \(S \). The category \(\mathcal{M} \) is an algebraic stack (in the sense of [20], also known as a Deligne-Mumford stack) which is smooth of relative dimension 1 over \(\text{Spec}(\mathcal{O}_K) \) (so it is 2-dimensional). For \(i \in \{1, 2\} \) let \(\mathcal{Y}_i \) be the algebraic stack over \(\text{Spec}(\mathcal{O}_K) \) with \(\mathcal{Y}_i(S) \) the category of elliptic curves over the \(\mathcal{O}_K \)-scheme \(S \) with complex multiplication by \(\mathcal{O}_{K_i} \). When we speak of an elliptic curve \(E \) over an \(\mathcal{O}_K \)-scheme \(S \) with complex multiplication by \(\mathcal{O}_{K_i} \), we are assuming that the action \(\mathcal{O}_{K_i} \hookrightarrow \text{End}_{\mathcal{O}_S}(\text{Lie}(E)) \) is through the structure map \(\mathcal{O}_{K_i} \hookrightarrow \mathcal{O}_{K} \hookrightarrow \mathcal{O}_S(S) \). The stack \(\mathcal{Y}_i \) is finite and étale over \(\text{Spec}(\mathcal{O}_K) \), so in particular it is 1-dimensional and regular. There is a finite morphism \(\mathcal{Y}_i \rightarrow \mathcal{M} \) defined by forgetting the complex multiplication structure.

Even though the morphism \(\mathcal{Y}_1 \rightarrow \mathcal{M} \) is not a closed immersion, we view \(\mathcal{Y}_i \) as a divisor on \(\mathcal{M} \) through its image ([20, Definition 1.7]). A natural question to now ask is: what is the intersection multiplicity, defined in the appropriate sense below, of the two divisors \(\mathcal{Y}_1 \) and \(\mathcal{Y}_2 \) on \(\mathcal{M} \)? More generally, if \(T_m : \text{Div}(\mathcal{M}) \rightarrow \text{Div}(\mathcal{M}) \) is the \(m \)-th Hecke correspondence on \(\mathcal{M} \), what is the intersection multiplicity of \(T_m \mathcal{Y}_1 \) and \(\mathcal{Y}_2 \)?

If \(\mathcal{D}_1 \) and \(\mathcal{D}_2 \) are two prime divisors on \(\mathcal{M} \) intersecting properly, meaning \(\mathcal{D}_1 \cap \mathcal{D}_2 = \mathcal{D}_1 \times_{\mathcal{M}} \mathcal{D}_2 \) is an algebraic stack of dimension 0, define the intersection multiplicity of \(\mathcal{D}_1 \) and \(\mathcal{D}_2 \).
and \(\mathcal{D}_2 \) on \(\mathfrak{M} \) to be

\[
I(\mathcal{D}_1, \mathcal{D}_2) = \sum_{\mathfrak{P} \subset \mathcal{O}_K} \log(|\mathfrak{P}|) \sum_{x \in [(\mathcal{D}_1 \cap \mathcal{D}_2)(\mathfrak{P})]} \frac{\text{length}(\mathcal{O}^\text{sh}_{\mathcal{D}_1 \cap \mathcal{D}_2, x})}{\text{Aut}(x)},
\]

where \([(\mathcal{D}_1 \cap \mathcal{D}_2)(S)]\) is the set of isomorphism classes of objects in the category \((\mathcal{D}_1 \cap \mathcal{D}_2)(S)\) and \(\mathcal{O}^\text{sh}_{\mathcal{D}_1 \cap \mathcal{D}_2, x}\) is the strictly Henselian local ring of \(\mathcal{D}_1 \cap \mathcal{D}_2\) at the geometric point \(x\) (the local ring for the étale topology). Also, the outer sum is over all prime ideals \(\mathfrak{P} \subset \mathcal{O}_K\), \(\mathbb{F}_\mathfrak{P} = \mathcal{O}_K/\mathfrak{P}\), and \(\text{Spec}(\mathbb{F}_\mathfrak{P})\) is an \(\mathcal{O}_K\)-scheme through the reduction map \(\mathcal{O}_K \twoheadrightarrow \mathbb{F}_\mathfrak{P}\). This number is also called the arithmetic degree of the 0-dimensional stack \(\mathcal{D}_1 \cap \mathcal{D}_2\) and is denoted \(\text{deg}(\mathcal{D}_1 \cap \mathcal{D}_2)\). The definition of \(I(\mathcal{D}_1, \mathcal{D}_2)\) is extended to all divisors \(\mathcal{D}_1\) and \(\mathcal{D}_2\) by bilinearity, assuming \(\mathcal{D}_1\) and \(\mathcal{D}_2\) intersect properly.

The intersection multiplicity \(I(\mathcal{Y}_1, \mathcal{Y}_2)\) relates to the Gross-Zagier formula on singular moduli as follows. Let \(L \supset K\) be a number field and suppose \(E_1\) and \(E_2\) are elliptic curves over \(\text{Spec}(\mathcal{O}_L)\). The \(j\)-invariant determines an isomorphism of schemes \(M_{\mathcal{O}_L} \cong \text{Spec}(\mathcal{O}_L[x])\), where \(M \twoheadrightarrow \text{Spec}(\mathcal{O}_K)\) is the coarse moduli scheme associated with \(\mathfrak{M}\), and the elliptic curves \(E_1\) and \(E_2\) determine morphisms \(\text{Spec}(\mathcal{O}_L) \twoheadrightarrow M_{\mathcal{O}_L}\). These morphisms correspond to ring homomorphisms \(\mathcal{O}_L[x] \twoheadrightarrow \mathcal{O}_L\) defined by \(x \mapsto j(E_1)\) and \(x \mapsto j(E_2)\). Let \(D_1\) and \(D_2\) be the divisors on \(M_{\mathcal{O}_L}\) defined by the morphisms \(\text{Spec}(\mathcal{O}_L) \twoheadrightarrow M_{\mathcal{O}_L}\). Then

\[D_1 \cap D_2 = \text{Spec}(\mathcal{O}_L \otimes_{\mathcal{O}_L[x]} \mathcal{O}_L) \cong \text{Spec}(\mathcal{O}_L/(j(E_1) - j(E_2))).\]

For \(\tau\) an imaginary quadratic integer in the complex upper half plane, let \(|\tau|\) be its equivalence class under the action of \(\text{SL}_2(\mathbb{Z})\). As in [7] define

\[
J(d_1, d_2) = \left(\prod_{\text{disc}(\tau_1) = d_1} (j(\tau_1) - j(\tau_2)) \right)^{4/(w_1 w_2)},
\]

where \(w_i = |\mathcal{O}_K^\times|\). It follows from the above discussion that the main result of [7], which is a formula for the prime factorization of the integer \(J(d_1, d_2)^2\), is essentially the same as giving a formula for \(\text{deg}(\mathcal{Y}_1 \cap \mathcal{Y}_2) = I(\mathcal{Y}_1, \mathcal{Y}_2)\).

For each positive integer \(m\) define \(\mathcal{F}_m\) to be the algebraic stack over \(\text{Spec}(\mathcal{O}_K)\) with \(\mathcal{F}_m(S)\) the category of triples \((E_1, E_2, f)\) where \(E_i\) is an object of \(\mathcal{Y}_i(S)\) and \(f \in \text{Hom}_S(E_1, E_2)\) satisfies \(\text{deg}(f) = m\) on every connected component of \(S\). In [10] it is shown there is a decomposition

\[
\mathcal{F}_m = \bigsqcup_{\alpha \in F^\times} \mathcal{F}_\alpha \quad \text{Tr}_{F/\mathbb{Q}(\alpha)}(\alpha) = m
\]

for some 0-dimensional stacks \(\mathcal{F}_\alpha \to \text{Spec}(\mathcal{O}_K)\) and then a formula is given for each term in

\[
\text{deg}(\mathcal{F}_m) = \sum_{\alpha \in D^{-1}, \alpha \geq 0} \text{deg}(\mathcal{F}_\alpha),
\]

with \(\text{deg}(\mathcal{F}_m)\) and \(\text{deg}(\mathcal{F}_\alpha)\) defined just as in (1.1). We will prove later (in the appendix) that

\[
\text{deg}(\mathcal{F}_m) = I(T_m, \mathcal{Y}_1, \mathcal{Y}_2),
\]

so the main result of [10] really is a refinement of the Gross-Zagier formula.
Let \mathcal{X} be the algebraic stack over $\text{Spec}(\mathcal{O}_K)$ with fiber $\mathcal{X}(S)$ the category of pairs (E_1, E_2) where $E_i = (E_i, \kappa_i)$ with E_i an elliptic curve over the \mathcal{O}_K-scheme S with complex multiplication $\kappa_i : \mathcal{O}_K \to \text{End}_S(E_i)$. Let (E_1, E_2) be an object of $\mathcal{X}(S)$. The maximal order $\mathcal{O}_K = \mathcal{O}_{K_1} \otimes_{\mathbb{Z}} \mathcal{O}_{K_2}$ acts on the \mathbb{Z}-module $L(E_1, E_2) = \text{Hom}_S(E_1, E_2)$ by

$$ (t_1 \otimes t_2) \cdot f = \kappa_2(t_2) \circ f \circ \kappa_1(t_1), $$

where $x \mapsto \pi$ is the nontrivial element of $\text{Gal}(K/F)$. Writing $[\cdot, \cdot]$ for the bilinear form on $L(E_1, E_2)$ associated with the quadratic form deg, there is a unique \mathcal{O}_F-bilinear form $[\cdot, \cdot]_{\text{CM}} : L(E_1, E_2) \times L(E_1, E_2) \to \mathcal{O}^{-1}$ satisfying $[f_1, f_2] = \text{Tr}_{F/\mathbb{Q}}[f_1, f_2]_{\text{CM}}$. Let deg_{CM} be the totally positive definite F-quadratic form on $L(E_1, E_2) \otimes_{\mathbb{Z}} \mathbb{Q}$ corresponding to $[\cdot, \cdot]_{\text{CM}}$, so $\text{deg}(f) = \text{Tr}_{F/\mathbb{Q}} \text{deg}_{\text{CM}}(f)$.

For any $\alpha \in F^\times$ let \mathcal{X}_α be the algebraic stack over $\text{Spec}(\mathcal{O}_K)$ with $\mathcal{X}_\alpha(S)$ the category of triples (E_1, E_2, f) where (E_1, E_2) is an object of $\mathcal{X}(S)$ and $f \in L(E_1, E_2)$ satisfies $\text{deg}_{\text{CM}}(f) = \alpha$ on every connected component of S. The category \mathcal{X}_α is empty unless α is totally positive and lies in \mathcal{O}^{-1}.

Let χ be the quadratic Hecke character associated with the extension K/F and for $\alpha \in F^\times$ define $\text{Diff}(\alpha)$ to be the set of prime ideals $\mathfrak{p} \subset \mathcal{O}_F$ satisfying $\chi_{\mathfrak{p}}(\alpha \mathcal{O}) = -1$. The set $\text{Diff}(\alpha)$ is finite and nonempty. For any fractional \mathcal{O}_F-ideal \mathfrak{b} let $\rho(\mathfrak{b})$ be the number of ideals $\mathfrak{B} \subset \mathcal{O}_K$ satisfying $N_{K/F}(\mathfrak{B}) = \mathfrak{b}$. For any prime number ℓ let $\rho_{\ell}(\mathfrak{b})$ be the number of ideals $\mathfrak{B} \subset \mathcal{O}_{K,\ell}$ satisfying $N_{K,\ell/F}(\mathfrak{B}) = b\mathcal{O}_{K,\ell}$, so there is a product formula

$$ \rho(\mathfrak{b}) = \prod_{\ell} \rho_{\ell}(\mathfrak{b}). $$

The following theorem, which is essentially [10, Theorem A], is the main result we will generalize.

Theorem 1 (Howard-Yang). Suppose $\alpha \in F^\times$ is totally positive. If $\alpha \in \mathcal{O}^{-1}$ and $\text{Diff}(\alpha) = \{ \mathfrak{p} \}$ then \mathcal{X}_α is of dimension zero, is supported in characteristic p (the rational prime below p), and satisfies

$$ \text{deg}(\mathcal{X}_\alpha) = \frac{1}{2} \log(p) \cdot \text{ord}_{\mathfrak{p}}(\alpha \mathcal{O}) \cdot \rho(\alpha \mathcal{O}^{-1}). $$

If $\alpha \notin \mathcal{O}^{-1}$ or if $\# \text{Diff}(\alpha) > 1$, then $\text{deg}(\mathcal{X}_\alpha) = 0$.

1.2. **False elliptic curves**. Our work in generalizing Theorem 1 goes as follows. Let B be an indefinite quaternion algebra over \mathbb{Q}, let \mathcal{O}_B be a maximal order of B, and let d_B be the discriminant of B. A **false elliptic curve** over a scheme S is a pair (A, i) where $A \to S$ is an abelian scheme of relative dimension 2 and $i : \mathcal{O}_B \to \text{End}_S(A)$ is a ring homomorphism. Any false elliptic curve A comes equipped with a principal polarization $\lambda : A \to A^\vee$ uniquely determined by a condition described below. If A_1 and A_2 are false elliptic curves over a connected scheme S with corresponding principal polarizations λ_1 and λ_2, then the map

$$ f \mapsto \lambda_1^{-1} \circ f^\vee \circ \lambda_2 \circ f : \text{Hom}_{\mathcal{O}_B}(A_1, A_2) \to \text{End}_{\mathcal{O}_B}(A_1) $$

has image in $\mathbb{Z} \subset \text{End}_{\mathcal{O}_B}(A_1)$ and defines a positive definite quadratic form, called the **false degree** and denoted deg^\star.

We retain the same notation of K_1, K_2, F, and K as above. We also assume each prime dividing d_B is inert in K_1 and K_2, so in particular, K_1 and K_2 split B. Let S be an \mathcal{O}_K-scheme. A **false elliptic curve** over S with complex multiplication by \mathcal{O}_{K_j}, for $j \in \{1, 2\}$, is a triple $\mathbf{A} = (A, i, \kappa)$ where (A, i) is a false elliptic curve over S and $\kappa : \mathcal{O}_{K_j} \to \text{End}_{\mathcal{O}_B}(A)$
is an action such that the induced map $\mathcal{O}_{K_j} \to \text{End}_{\mathcal{O}_B}(\text{Lie}(A))$ is through the structure map $\mathcal{O}_{K_j} \to \mathcal{O}_K \to \mathcal{O}_S(S)$. Let $m_B \subset \mathcal{O}_B$ be the unique ideal of index d_B, so $\mathcal{O}_B/m_B \cong \prod_{p \mid d_B} \mathbb{F}_{p^2}$.

Let \mathcal{M}^B be the category fibered in groupoids over $\text{Spec}(\mathcal{O}_K)$ with $\mathcal{M}^B(S)$ the category whose objects are false elliptic curves (A, i) over the \mathcal{O}_K-scheme S satisfying the following condition for any $x \in \mathcal{O}_B$: any point of S has an affine open neighborhood $\text{Spec}(R) \to S$ such that $\text{Lie}(A/R)$ is a free R-module of rank 2 and there is an equality of polynomials

\[
\text{char}(i(x), \text{Lie}(A/R)) = (T - x)(T - x')
\]

in $\mathbb{R}[T]$, where $x \mapsto x'$ is the main involution on B. The category \mathcal{M}^B is an algebraic stack which is regular and flat of relative dimension 1 over $\text{Spec}(\mathcal{O}_K)$, smooth over $\text{Spec}(\mathcal{O}_K[d_B])$ (if B is a division algebra, \mathcal{M}^B is proper over $\text{Spec}(\mathcal{O}_K)$). For $j \in \{1, 2\}$ let \mathcal{Y}^B_j be the algebraic stack over $\text{Spec}(\mathcal{O}_K)$ with $\mathcal{Y}^B_j(S)$ the category of false elliptic curves over the \mathcal{O}_K-scheme S with complex multiplication by \mathcal{O}_{K_j}. The stack \mathcal{Y}^B_j is finite and étale over $\text{Spec}(\mathcal{O}_K)$, so in particular it is 1-dimensional and regular. Any object of $\mathcal{Y}^B_j(S)$ automatically satisfies condition (1.3) (see Corollary 3.13 below). Therefore there is a finite morphism $\mathcal{Y}^B_j \to \mathcal{M}^B$ defined by forgetting the complex multiplication structure.

Our main goal is to calculate the intersection multiplicity of the two divisors $T_m \mathcal{Y}^B_1$ and \mathcal{Y}^B_2 on \mathcal{M}^B, defined just as in (1.1), where T_m is the m-th Hecke correspondence on \mathcal{M}^B. In the course of this calculation we prove the following result, which should be of independent interest. Let k be an imaginary quadratic field and let L be any finite extension of k. Assume each prime dividing d_B is inert in k. Define \mathcal{Y} to be the algebraic stack over $\text{Spec}(\mathcal{O}_L)$ consisting of all elliptic curves over \mathcal{O}_L-schemes with CM by \mathcal{O}_k, and make the analogous definition of \mathcal{Y}^B for false elliptic curves. Then there is a decomposition

$$\mathcal{Y}^B = \bigsqcup_{\mathcal{O}_k \to \mathcal{O}_B/m_B} \mathcal{Y},$$

where the union is over all ring homomorphisms $\mathcal{O}_k \to \mathcal{O}_B/m_B$ (Theorem 3.12).

A CM pair over an \mathcal{O}_K-scheme S is a pair (A_1, A_2) where A_1 and A_2 are false elliptic curves over S with complex multiplication by \mathcal{O}_{K_1} and \mathcal{O}_{K_2}, respectively. For such a pair, set $L(A_1, A_2) = \text{Hom}_{\mathcal{O}_A}(A_1, A_2)$. As before, there is a unique \mathcal{O}_F-quadratic form $\deg_{\text{CM}} : L(A_1, A_2) \to \mathbb{D}^{-1}$ satisfying $\text{Tr}_{F/\mathbb{Q}} \deg_{\text{CM}}(f) = \deg^*(f)$. For any false elliptic curve A let $A[m_B]$ be its m_B-torsion, defined as a group scheme below. For any ring homomorphism $\theta : \mathcal{O}_K \to \mathcal{O}_B/m_B$ define \mathcal{X}^B_θ to be the algebraic stack over $\text{Spec}(\mathcal{O}_K)$ where $\mathcal{X}^B_\theta(S)$ is the category of CM pairs (A_1, A_2) over the \mathcal{O}_K-scheme S such that the diagram

$$\begin{gathered}
\mathcal{O}_K \to \mathcal{O}_B/m_B \to \text{End}_{\mathcal{O}_B/m_B}(A_j[m_B]), \\
\mathcal{O}_B/m_B \\
\theta|\mathcal{O}_K
\end{gathered}$$

commutes for $j = 1, 2$, where $\mathcal{O}_B/m_B \to \text{End}_{\mathcal{O}_B/m_B}(A_j[m_B])$ is the map induced by the action of \mathcal{O}_B on A_j. Note that this map makes sense as \mathcal{O}_B/m_B is commutative. If $B = M_2(\mathbb{Q})$ then $m_B = \mathcal{O}_B$, so any such θ is necessarily 0 and \mathcal{X}^B_0 is the stack of all CM pairs over \mathcal{O}_K-schemes.

For any $\alpha \in F^\times$ define $\mathcal{X}^B_{\theta, \alpha}$ to be the algebraic stack over $\text{Spec}(\mathcal{O}_K)$ with $\mathcal{X}^B_{\theta, \alpha}(S)$ the category of triples (A_1, A_2, f) where (A_1, A_2) is an object of $\mathcal{X}^B_\theta(S)$ and $f \in L(A_1, A_2)$
satisfies \(\deg_{CM}(f) = \alpha \) on every connected component of \(S \). Define the arithmetic degree of \(\mathcal{X}^B_{\theta,\alpha} \) as in (1.1) and define a nonempty finite set of prime ideals

\[
\text{Diff}_\theta(\alpha) = \{ p \subset \mathcal{O}_F : \chi_p(\alpha a_\theta \mathcal{D}) = -1 \},
\]

where \(a_\theta = \ker(\theta) \cap \mathcal{O}_F \). Our main result is the following (Proposition 7.2 and Theorems 6.7 and 7.3 in the text; see the appendix for the proof of (b)).

Theorem 2. Let \(\alpha \in F^\times \) be totally positive and suppose \(\alpha \in \mathcal{D}^{-1} \). Let \(\theta : \mathcal{O}_K \to \mathcal{O}_B/m_B \) be a ring homomorphism with \(a_\theta = \ker(\theta) \cap \mathcal{O}_F \), suppose \(\text{Diff}_\theta(\alpha) = \{ p \} \), and let \(p\mathbb{Z} = p \cap \mathcal{O}_F \).

(a) The stack \(\mathcal{X}^B_{\theta,\alpha} \) is of dimension zero and is supported in characteristic p.

(b) There is a decomposition

\[
I(T_m, \mathcal{X}^B_1, \mathcal{X}^B_2) = \sum_{\beta \in \mathcal{D}^{-1}, \beta \geq 0} \sum_{\mathcal{O}_K \to \mathcal{O}_B/m_B} \deg(\mathcal{X}^B_{\eta,\beta}).
\]

(c) If \(p \mid d_B \) then

\[
\deg(\mathcal{X}^B_{\theta,\alpha}) = \frac{1}{2} \log(p) \cdot \text{ord}_p(\alpha p \mathcal{D}) \cdot \rho(\alpha a_\theta^{-1} p^{-1} \mathcal{D}).
\]

(d) Suppose \(p \mid d_B \) and let \(\mathfrak{P} \subset \mathcal{O}_K \) be the unique prime over \(p \). If \(\mathfrak{P} \) divides \(\ker(\theta) \) then

\[
\deg(\mathcal{X}^B_{\theta,\alpha}) = \frac{1}{2} \log(p) \cdot \text{ord}_p(\alpha) \cdot \rho(\alpha a_\theta^{-1} p^{-1} \mathcal{D}).
\]

If \(\mathfrak{P} \) does not divide \(\ker(\theta) \) then

\[
\deg(\mathcal{X}^B_{\theta,\alpha}) = \frac{1}{2} \log(p) \cdot \text{ord}_p(\alpha p) \cdot \rho(\alpha a_\theta^{-1} p^{-1} \mathcal{D}).
\]

If \(\alpha \notin \mathcal{D}^{-1} \) or if \(\# \text{Diff}_\theta(\alpha) > 1 \), then \(\deg(\mathcal{X}^B_{\theta,\alpha}) = 0 \).

The proof of this theorem consists of two general parts: counting the number of geometric points of the stack \(\mathcal{X}^B_{\theta,\alpha} \) (Theorem 5.13 and Proposition 5.14) and calculating the length of the local ring \(\mathcal{O}^{sh}_{\mathcal{X}^B_{\theta,\alpha},x} \) (Theorem 6.7).

1.3. Eisenstein series.**

Theorem 1 is really only half of a larger story, one that gives a better explanation of the definition of the arithmetic degree of \(\mathcal{X}^B_{\theta,\alpha} \) and provides a surprising connection between arithmetic geometry and analysis. To explain this, let \(K_1, K_2, F \), and \(K \) be as in Section 1.1, let \(D = \text{disc}(F) \), and let \(\sigma_1 \) and \(\sigma_2 \) be the two real embeddings of \(F \). For \(\tau_1, \tau_2 \) in the complex upper half plane and \(s \in \mathbb{C} \) define an Eisenstein series

\[
E^s(\tau_1, \tau_2, s) = \frac{\Gamma \left(\frac{s+2}{2} \right)}{\Gamma \left(\frac{s}{2} \right)}^{2} \sum_{\mathcal{O}^2_F} \chi(\alpha) N(\alpha)^{1+s} \sum_{(m,n) \in \mathbb{Z} \times \mathbb{Z}} (v_1 v_2)^{s/2} \left[\frac{m,n}{(m,n)(\tau_1,\tau_2)} \right]^{s}.
\]

where \(\text{Cl}(\mathcal{O}_F) \) is the ideal class group of \(F \), \(v_1 = \text{Im}(\tau_1) \), and

\[
[m,n](\tau_1,\tau_2) = (\sigma_1(m)\tau_1 + \sigma_1(n))(\sigma_2(m)\tau_2 + \sigma_2(n)).
\]

This series, which is convergent for \(\Re(s) > 0 \), has meromorphic continuation to all \(s \in \mathbb{C} \) and defines a non-holomorphic Hilbert modular form of weight 1 for \(\text{SL}_2(\mathcal{O}_F) \) which is
holomorphic in s in a neighborhood of $s = 0$. The derivative of $E^*(\tau_1, \tau_2, s)$ at $s = 0$ has a Fourier expansion

$$(E^*)'(\tau_1, \tau_2, 0) = \sum_{\alpha \in \mathcal{D}^{-1}} a_\alpha(v_1, v_2) \cdot q^{\alpha},$$

where $e(x) = e^{2\pi i x}$ and $q^\alpha = e(\sigma_1(\alpha) \tau_1 + \sigma_2(\alpha) \tau_2)$. The connection between this analytic theory and the moduli space \mathcal{X}_α lies in the next theorem ([10, Theorem B, Theorem C]).

Theorem (Howard-Yang). Suppose $\alpha \in F^\times$ is totally positive. If $\alpha \in \mathcal{D}^{-1}$ then $a_\alpha = a_\alpha(v_1, v_2)$ is independent of v_1, v_2 and $a_\alpha = 4 \cdot \deg(\mathcal{X}_\alpha)$.

It seems likely that there is a theorem in the spirit of the one above for the moduli space \mathcal{X}_{α}^B, but we do not pursue that direction here. A reasonable next question to address is: can Theorem 2 be extended to the case where \mathcal{Y}^B is defined to be the stack of false elliptic curves with CM by a fixed non-maximal order in K_0^*? A result of this type would seemingly extend the results of Lauter and Viray in [12] to false elliptic curves.

1.4. **Notation and conventions.** If X is an abelian variety or a p-divisible group over a field k, we write $\text{End}(X)$ for $\text{End}_k(X)$. When we say “stack” we mean algebraic stack in the sense of [20], also called a Deligne-Mumford stack. We write \mathbb{Q}_{p^2} for the unique unramified quadratic extension of \mathbb{Q}_p and $\mathbb{Z}_{p^2} \subset \mathbb{Q}_{p^2}$ its ring of integers. By “scheme” we mean locally Noetherian scheme. If \mathcal{C} is a category, we write $C \in \mathcal{C}$ to mean C is an object of \mathcal{C}.

2. **False elliptic curves**

In this section we give a brief review of the basic theory of false elliptic curves. For the remainder of this paper fix an indefinite quaternion algebra B over \mathbb{Q} and a maximal order \mathcal{O}_B of B. We do not exclude the case where B is split, that is, where $B = M_2(\mathbb{Q})$. As B is split at ∞, all maximal orders of B are conjugate by elements of B^\times. Let d_B be the discriminant of B.

Definition 2.1. Let S be a scheme. A false elliptic curve over S is a pair (A, i) where $A \to S$ is an abelian scheme of relative dimension 2 and $i : \mathcal{O}_B \hookrightarrow \text{End}_S(A)$ is an injective ring homomorphism.

Definition 2.2. Let (A_1, i_1) and (A_2, i_2) be two false elliptic curves over a scheme S. A homomorphism $f : A_1 \to A_2$ of false elliptic curves is a homomorphism of abelian schemes over S satisfying $i_2(x) \circ f = f \circ i_1(x)$ for all $x \in \mathcal{O}_B$. If in addition f is an isogeny of abelian schemes, then f is called an isogeny of false elliptic curves.

In fact, any nonzero homomorphism of false elliptic curves $A_1 \to A_2$ is necessarily an isogeny. For each place v of \mathbb{Q} let $\text{inv}_v : \text{Br}_2(\mathbb{Q}_v) \to \{\pm 1\}$ be the unique isomorphism.

Definition 2.3. For each prime number p, define $B(p)$ to be the quaternion division algebra over \mathbb{Q} determined by

$$\text{inv}_v(B(p)) = \begin{cases} \text{inv}_v(B) & \text{if } v \notin \{p, \infty\} \\ -\text{inv}_v(B) & \text{if } v \in \{p, \infty\}. \end{cases}$$

Proposition 2.4. Suppose A is a false elliptic curve over a field k.

(a) If $k = \mathbb{F}_p$ then $\text{End}_\mathcal{O}_B(A) = \text{End}_{\mathcal{O}_B}(A) \otimes_\mathbb{Z} \mathbb{Q}$ is either

1. an imaginary quadratic field L which admits an embedding $L \hookrightarrow B$, or
2. the definite quaternion algebra $B(p)$.
Furthermore, \(A \) is isogenous to \(E^2 \) for some elliptic curve \(E \) over \(\overline{\mathbb{F}}_p \), with \(E \) ordinary in case (1) and supersingular in case (2).

(b) If \(k = \mathbb{C} \) then \(\text{End}^0_{\mathbb{Q}}(A) \) is either \(\mathbb{Q} \) or an imaginary quadratic field which splits \(B \).

Proof. For (a) see [13, Proposition 5.2] and for (b) see [3, Proposition 52]. \(\square \)

Proposition 2.5. Suppose \(A \) is a false elliptic curve over a field \(L \supset \mathbb{F}_p \). Then \(\text{End}(A) \) embeds into \(\text{End}(A') \) for some false elliptic curve \(A' \) defined over a finite extension of \(\mathbb{F}_p \).

Proof. Use induction on the transcendence degree of \(L \) over \(\mathbb{F}_p \). \(\square \)

Let \(x \mapsto x' \) be the main involution of \(B \) and fix \(a \in \mathcal{O}_B \) satisfying \(a^2 = -d_B \). Define another involution on \(B \) by \(x \mapsto x'' = a^{-1}x'a \). The order \(\mathcal{O}_B \) is stable under \(x \mapsto x'' \). If \((A, i) \) is a false elliptic curve over \(S \), then so is the dual abelian scheme \(A' \), with corresponding homomorphism \(i^\vee : \mathcal{O}_B \to \text{End}_S(A') \) defined by \(i^\vee(x) = i(x)^\vee \). If \(f : A_1 \to A_2 \) is a homomorphism of false elliptic curves, then so is \(f^\vee : A_2' \to A_1' \).

Proposition 2.6. Let \(A \) be a false elliptic curve over a scheme \(S \). There is a unique principal polarization \(\lambda : A \to A' \) such that the corresponding Rosati involution \(\varphi \mapsto \varphi^\dagger = \lambda^{-1} \circ \varphi^\vee \circ \lambda \) on \(\text{End}(A) \) induces \(x \mapsto x^\ast \) on \(\mathcal{O}_B \subset \text{End}(A) \).

Proof. See [2, p. 3] and [1, Proposition III.3.3]. \(\square \)

Let \(A_1 \) and \(A_2 \) be false elliptic curves over \(S \) with corresponding principal polarizations \(\lambda_1 : A_1 \to A_1' \) and \(\lambda_2 : A_2 \to A_2' \). Suppose \(f : A_1 \to A_2 \) is an isogeny of false elliptic curves. Using the principal polarizations \(\lambda_1 \) and \(\lambda_2 \), we obtain a map \(f^\dagger : A_2 \to A_1 \) defined as the composition

\[
 f^\dagger = \lambda_1^{-1} \circ f^\vee \circ \lambda_2 : A_2 \to A_1.
\]

This is an isogeny of false elliptic curves, called the dual isogeny to \(f \).

Proposition 2.7. Let \(f : A_1 \to A_2 \) be an isogeny of false elliptic curves over a scheme \(S \). The isogeny \(f^\dagger \circ f : A_1 \to A_1 \) is locally on \(S \) multiplication by an integer.

Proof. This can be checked on geometric fibers, so we may assume \(A_1 \) is a false elliptic curve over an algebraically closed field. Viewing \(f^\dagger \circ f \in \text{End}^0_{\mathbb{Q}}(A_1) \), a calculation shows \(f^\dagger \circ f \) is fixed by the Rosati involution corresponding to \(\lambda_1 \). The set of fixed points is \(\mathbb{Q} \), so \(f^\dagger \circ f : A_1 \to A_1 \) is multiplication by an integer. \(\square \)

Definition 2.8. If the integer in the previous proposition is constant on \(S \), then it is called the false degree of \(f \), and is denoted \(\text{deg}^* (f) \).

Proposition 2.9. Let \(A_1 \) and \(A_2 \) be false elliptic curves over a connected scheme \(S \). The map \(\text{deg}^* : \text{Hom}_{\mathcal{O}_S}(A_1, A_2) \to \mathbb{Z} \) is a positive definite quadratic form.

Proof. Easy exercise. \(\square \)

3. CM false elliptic curves

For this section let \(k \) be an imaginary quadratic field and let \(L \) be a finite extension of \(k \). Assume any prime dividing \(d_B \) is inert in \(k \).
3.1. Definitions.

Definition 3.1. Let \(S \) be an \(\mathcal{O}_L \)-scheme. A false elliptic curve over \(S \) with complex multiplication by \(\mathcal{O}_k \) is a triple \(A = (A, i, \kappa) \), where \((A, i) \) is a false elliptic curve over \(S \) and \(\kappa : \mathcal{O}_k \to \text{End}_{\mathcal{O}_B}(A) \) is a ring homomorphism such that the diagram

\[
\begin{array}{ccc}
\mathcal{O}_k & \xrightarrow{\kappa_{\text{Lie}}} & \text{End}_{\mathcal{O}_B}(\text{Lie}(A)) \\
\downarrow & & \downarrow \\
\mathcal{O}_S(S) & \xrightarrow{} & \mathcal{O}_S(S)
\end{array}
\]

commutes, where \(\mathcal{O}_k \hookrightarrow \mathcal{O}_L \to \mathcal{O}_S(S) \) is the structure map. We call the commutativity of this diagram the CM normalization condition.

When we speak of a CM false elliptic curve over \(\mathbb{F}_p \) for some prime ideal \(\mathfrak{p} \subset \mathcal{O}_L \), it is understood that \(\text{Spec}(\mathbb{F}_p) \) is an \(\mathcal{O}_L \)-scheme through the reduction map \(\mathcal{O}_L \to \mathbb{F}_p \hookrightarrow \mathbb{F}_p \). Less precisely, when we speak of a CM false elliptic curve \(A \) over \(\mathbb{F}_p \) for some prime number \(p \), we really mean \(A \) is a CM false elliptic curve over \(\mathbb{F}_p \) for some prime ideal \(\mathfrak{p} \subset \mathcal{O}_L \) lying over \(p \).

Definition 3.2. Define \(\mathcal{Y}^B \) to be the category whose objects are triples \((A, i, \kappa) \), where \((A, i) \) is a false elliptic curve over some \(\mathcal{O}_L \)-scheme with complex multiplication \(\kappa : \mathcal{O}_k \to \text{End}_{\mathcal{O}_B}(A) \). A morphism \((A', i', \kappa') \to (A, i, \kappa) \) between two such triples defined over \(\mathcal{O}_L \)-schemes \(T \) and \(S \), respectively, is a morphism of \(\mathcal{O}_L \)-schemes \(T \to S \) together with an \(\mathcal{O}_k \)-linear isomorphism \(A' \to A \times_S T \) of false elliptic curves.

The category \(\mathcal{Y}^B \) is a stack of finite type over \(\text{Spec}(\mathcal{O}_L) \). In fact, \(\mathcal{Y}^B \to \text{Spec}(\mathcal{O}_L) \) is étale by Proposition 3.6 below, proper by a proof identical to that of [9, Proposition 3.3.5], and quasi-finite by Propositions 3.4 and 3.7 below, so the morphism is finite étale. Let \([\mathcal{Y}^B(S)] \) denote the set of isomorphism classes of objects in \(\mathcal{Y}^B(S) \).

For each prime \(p \) dividing \(d_B \) there is a unique maximal ideal \(m_p \subset \mathcal{O}_B \) of residue characteristic \(p \), and \(\mathcal{O}_B/m_p \) is a finite field with \(p^2 \) elements. Set \(m_B = \bigcap_{p|d_B} m_p \). We have \(m_B = \prod_{p|d_B} m_p \) because for any two primes \(p \) and \(q \) dividing \(d_B \), \(m_p m_q = m_q m_p \) since these lattices have equal completions at each prime number. Note that

\[
\mathcal{O}_B/m_B \cong \prod_{p|d_B} \mathbb{F}_{p^2}
\]

as rings. Let \((A, i) \) be a false elliptic curve over a scheme \(S \). The \(d_B \)-torsion \(A[d_B] \) is a finite flat commutative \(S \)-group scheme with a natural action of \(m_B/d_B \mathcal{O}_B \). Let \(x_B \) be any element of \(m_B \) whose image generates the principal ideal \(m_B/d_B \mathcal{O}_B \subset \mathcal{O}_B/d_B \mathcal{O}_B \). Define the \(m_B \)-torsion of \(A \) as

\[
A[m_B] = \ker(i(x_B) : A[d_B] \to A[d_B]),
\]

which again is a finite flat commutative \(S \)-group scheme \(i(x_B) : A \to A \) is an isogeny). This definition does not depend on the choice of \(x_B \). The group scheme \(A[m_B] \) has an action of \(\mathcal{O}_B/m_B \) given on points by \(x \cdot a = i(x)(a) \) for \(x \in \mathcal{O}_B/m_B \) and \(a \in A[m_B](T) \) for any \(S \)-scheme \(T \). All the statements of this paragraph are vacuous if \(B \) is split.
Definition 3.3. Let \(\theta : \mathcal{O}_k \to \mathcal{O}_B/\mathfrak{m}_B \) be a ring homomorphism. Define \(\mathcal{Y}^B(\theta) \) to be the category whose objects are objects \((A, i, \kappa)\) of \(\mathcal{Y}^B \) such that the diagram

\[
\begin{array}{ccc}
\mathcal{O}_k & \xrightarrow{\kappa_{m_B}} & \text{End}_{\mathcal{O}_B/\mathfrak{m}_B}(A[\mathfrak{m}_B]) \\
\theta & & \\
\mathcal{O}_B/\mathfrak{m}_B & \xrightarrow{\kappa_{m_B}} & \text{End}_{\mathcal{O}_B/\mathfrak{m}_B}(A[\mathfrak{m}_B])
\end{array}
\]

commutes, where \(\kappa_{m_B} \) is the map on \(\mathfrak{m}_B \)-torsion induced by \(\kappa \) and

\[
\mathcal{O}_B/\mathfrak{m}_B \to \text{End}_{\mathcal{O}_B/\mathfrak{m}_B}(A[\mathfrak{m}_B])
\]

is the map induced by \(i \). Morphisms are defined in the same way as in the category \(\mathcal{Y}^B \).

Note that \(\mathcal{Y}^B(\theta) = \mathcal{Y}^B \) if \(B \) is split. Recall from the introduction that \(\mathcal{Y} \) is the stack over \(\text{Spec}(\mathcal{O}_L) \) with \(\mathcal{Y}(S) \) the category of elliptic curves over the \(\mathcal{O}_L \)-scheme \(S \) with CM by \(\mathcal{O}_k \). We will prove below there is an isomorphism of stacks over \(\text{Spec}(\mathcal{O}_L) \)

\[
\begin{array}{c}
\square \\
\theta : \mathcal{O}_k \to \mathcal{O}_B/\mathfrak{m}_B
\end{array}
\]

inducing an equivalence of categories \(\mathcal{Y} \to \mathcal{Y}^B(\theta) \) for any \(\theta \) (Theorem 3.12). It follows that \(\mathcal{Y}^B(\theta) \) has the structure of a stack, finite étale over \(\text{Spec}(\mathcal{O}_L) \), and \(\mathcal{Y} \cong \mathcal{Y}^B \) in the case of \(B \) split.

3.2. Group actions. Suppose \((A, i, \kappa)\) is a false elliptic curve over an \(\mathcal{O}_L \)-scheme \(S \) with complex multiplication by \(\mathcal{O}_k \), and let \(\mathfrak{a} \) be a fractional ideal of \(\mathcal{O}_k \). Since there is a ring homomorphism \(\kappa : \mathcal{O}_k \to \text{End}_S(A) \), we may view \(A \) as an \(\mathcal{O}_k \)-module scheme over \(S \), so from \(\mathfrak{a} \) being a finitely generated projective \(\mathcal{O}_k \)-module, locally free of rank 1, there is an abelian scheme \(\mathfrak{a} \otimes_{\mathcal{O}_k} A \to S \) of relative dimension 2 satisfying \((\mathfrak{a} \otimes_{\mathcal{O}_k} A)(X) = \mathfrak{a} \otimes_{\mathcal{O}_k} A(X) \) for any \(S \)-scheme \(X \) (see [4, Section 7]). There are commuting actions

\[
i_{\mathfrak{a}} : \mathcal{O}_B \to \text{End}_S(\mathfrak{a} \otimes_{\mathcal{O}_k} A), \quad \kappa_{\mathfrak{a}} : \mathcal{O}_k \to \text{End}_S(\mathfrak{a} \otimes_{\mathcal{O}_k} A)
\]

defined in the obvious way. Using the isomorphism \(\text{Lie}(\mathfrak{a} \otimes_{\mathcal{O}_k} A) \cong \mathfrak{a} \otimes_{\mathcal{O}_k} \text{Lie}(A) \) of \(\mathcal{O}_S \)-modules, it follows that \(\kappa_{\mathfrak{a}} \) inherits the CM normalization condition from \(\kappa \). This shows \(\mathfrak{a} \otimes_{\mathcal{O}_k} A \) is a false elliptic curve over \(S \) with complex multiplication by \(\mathcal{O}_k \). Therefore the ideal class group \(\text{Cl}(\mathcal{O}_k) \) acts on the set \([\mathcal{Y}^B(S)]\).

The other important group action on \([\mathcal{Y}^B(S)]\) comes from the Atkin-Lehner group \(W_0 \) of \(\mathcal{O}_B \). By definition, \(W_0 = N_{\mathfrak{B}^*}(\mathcal{O}_B)/\mathfrak{B}^* \mathcal{O}_B^* = \langle w_p : p \mid d_B \rangle \), where \(w_p \in \mathcal{O}_B \) has reduced norm \(p \). As an abstract group, \(W_0 \cong \prod_{p \mid d_B} \mathbb{Z}/2\mathbb{Z} \). The group \(W_0 \) acts on the set \([\mathcal{Y}^B(S)]\) for any \(\mathcal{O}_L \)-scheme \(S \) as follows: for \(w \in W_0 \) and \(x = (A, i, \kappa) \in \mathcal{Y}^B(S) \), define \(w \cdot x = (A, i_{w'}(a) = i(waw^{-1}) \). The actions of \(W_0 \) and \(\text{Cl}(\mathcal{O}_k) \) commute, so there is an induced action of \(W_0 \times \text{Cl}(\mathcal{O}_k) \) on \([\mathcal{Y}^B(S)]\).

Proposition 3.4. The group \(W_0 \times \text{Cl}(\mathcal{O}_k) \) acts simply transitively on \([\mathcal{Y}^B(\mathbb{C})]\).

Proof. It is shown in [11] that \(W_0' \times \text{Cl}(\mathcal{O}_k) \) acts simply transitively on \([\mathcal{Y}^B(\mathbb{C})]\), where \(W_0' \subset W_0 \) is the subgroup generated by \(\{w_p : p \mid d_B, p \text{ inert in } k\} \). However, we are assuming each prime \(p \mid d_B \) is inert in \(k \). \(\square\)
3.3. Structure of CM false elliptic curves. The main result of this section states that any CM false elliptic curve arises from a CM elliptic curve through the Serre tensor construction. We will use this in the next section to give a description, in terms of certain coordinates, of the ring \(\text{Hom}_{\mathcal{O}_L}(A) \otimes \mathbb{Z}_p \) for \(A \) a CM false elliptic curve over \(\overline{\mathbb{F}}_p \) for \(p \mid d_B \). Fix a prime ideal \(\mathfrak{p} \subset \mathcal{O}_L \) of residue characteristic \(p \). Let \(\mathcal{W}_{L_{\mathfrak{p}}} \) be the ring of integers in the completion of the maximal unramified extension of \(L_{\mathfrak{p}} \), so in particular \(\mathcal{W}_{L_{\mathfrak{p}}} \) is an \(\mathcal{O}_L \)-algebra. Let \(\text{CLN}_{L_{\mathfrak{p}}} \) be the category whose objects are complete local Noetherian \(\mathcal{W}_{L_{\mathfrak{p}}} \)-algebras with residue field \(\mathbb{F}_{\mathfrak{p}} \), where \(\mathbb{F}_{\mathfrak{p}} = \mathcal{O}_L/\mathfrak{p} \), and morphisms \(R \to R' \) are local ring homomorphisms inducing the identity \(\overline{\mathbb{F}}_{\mathfrak{p}} \to \overline{\mathbb{F}}_{\mathfrak{p}} \) on residue fields.

Definition 3.5. Suppose \(\tilde{R} \to R \) is a surjection of \(\mathcal{O}_L \)-algebras and \(x = (A, i, \kappa) \in \mathcal{Y}^B(R) \). A deformation of \(x \) (or just a deformation of \(A \)) to \(\tilde{R} \) is an object \((\tilde{A}, \tilde{i}, \tilde{\kappa}) \in \mathcal{Y}^B(\tilde{R}) \) together with an \(\mathcal{O}_k \)-linear isomorphism \(\tilde{A} \otimes_R R \to A \) of false elliptic curves.

If \(\tilde{R} \to R \) is a surjection of \(\mathcal{O}_L \)-algebras, \((A, i, \kappa) \in \mathcal{Y}^B(R) \), and \((\tilde{A}, \tilde{i}, \tilde{\kappa}) \in \mathcal{Y}^B(\tilde{R}) \) is a deformation of \((A, i, \kappa) \), then it is easy to check that the principal polarizations \(\tilde{\lambda} : \tilde{A} \to (\tilde{A})^\vee \) and \(\lambda : A \to A^\vee \) defined in Proposition 2.6 are compatible in the sense that \(\tilde{\lambda} \) is the reduction of \(\lambda \). Let \(x = (A, i, \kappa) \in \mathcal{Y}^B(\mathbb{F}_{\mathfrak{p}}) \) and define a functor \(\text{Def}_{\mathcal{O}_B}(A, \mathcal{O}_k) : \text{CLN}_{L_{\mathfrak{p}}} \to \text{Sets} \) that assigns to each object \(R \) of \(\text{CLN}_{L_{\mathfrak{p}}} \) the set of isomorphism classes of deformations of \(x \) to \(R \).

Proposition 3.6. The functor \(\text{Def}_{\mathcal{O}_B}(A, \mathcal{O}_k) \) is represented by \(\mathcal{W}_{L_{\mathfrak{p}}} \), so there is a bijection

\[
\text{Def}_{\mathcal{O}_B}(A, \mathcal{O}_k)(R) \cong \text{Hom}_{\text{CLN}_{L_{\mathfrak{p}}}}(\mathcal{W}_{L_{\mathfrak{p}}}, R),
\]

which is a one point set, for any object \(R \) of \(\text{CLN}_{L_{\mathfrak{p}}} \). In particular, the reduction map

\[
[\mathcal{Y}^B(R)] \to [\mathcal{Y}^B(\mathbb{F}_{\mathfrak{p}})]
\]

is a bijection for any \(R \in \text{CLN}_{L_{\mathfrak{p}}} \).

Proof. Let \(R \) be an Artinian object of \(\text{CLN}_{L_{\mathfrak{p}}} \), so the reduction map \(R \to \mathbb{F}_{\mathfrak{p}} \) is surjective with nilpotent kernel. By [8, Proposition 2.1.2], \(A \) has a unique deformation \(\hat{A} \), as a abelian scheme with an action of \(\mathcal{O}_k \), to \(R \), and the reduction map \(\text{End}_{\mathcal{O}_k}(\hat{A}) \to \text{End}_{\mathcal{O}_k}(A) \) is an isomorphism. Therefore we can lift the \(\mathcal{O}_k \)-linear action of \(\mathcal{O}_B \) on \(A \) to a unique such action on \(\hat{A} \). This shows that each object of \(\mathcal{Y}^B(\mathbb{F}_{\mathfrak{p}}) \) has a unique deformation to an object of \(\mathcal{Y}^B(R) \) for any Artinian \(R \) in \(\text{CLN}_{L_{\mathfrak{p}}} \). Now let \(R \) be an arbitrary object of \(\text{CLN}_{L_{\mathfrak{p}}} \), so \(R = \lim \frac{R}{m^n} \), where \(m \subset R \) is the maximal ideal. The result now follows from the Artinian case, the bijection

\[
\text{Hom}_{\text{CLN}_{L_{\mathfrak{p}}}}(\mathcal{W}_{L_{\mathfrak{p}}}, R) \cong \lim_{\text{def}} \text{Hom}_{\text{CLN}_{L_{\mathfrak{p}}}}(\mathcal{W}_{L_{\mathfrak{p}}}, \frac{R}{m^n}),
\]

and the fact that the natural map

\[
\text{Def}_{\mathcal{O}_B}(A, \mathcal{O}_k)(R) \to \lim_{\text{def}} \text{Def}_{\mathcal{O}_B}(A, \mathcal{O}_k)(\frac{R}{m^n})
\]

is a bijection by Grothendieck’s existence theorem ([4, Theorem 3.4]). □

Proposition 3.7. The group \(W_0 \times \text{Cl}(\mathcal{O}_k) \) acts simply transitively on \([\mathcal{Y}^B(\mathbb{F}_{\mathfrak{p}})] \).

Proof. Let \(\mathbb{C}_p \) be the metric completion of an algebraic closure of \(\mathbb{Q}_p \) and fix a ring embedding \(\mathcal{W}_{L_{\mathfrak{p}}} \to \mathbb{C}_p \). There is a \(W_0 \times \text{Cl}(\mathcal{O}_k) \)-equivariant bijection \([\mathcal{Y}^B(\mathbb{C}_p)] \to [\mathcal{Y}^B(\mathbb{F}_{\mathfrak{p}})] \) defined by descending to a number field, reducing modulo a prime over \(p \), and then base extending to \(\mathbb{F}_{\mathfrak{p}} \). The inverse to this map is the composition

\[
[\mathcal{Y}^B(\mathbb{F}_{\mathfrak{p}})] \to [\mathcal{Y}^B(\mathcal{W}_{L_{\mathfrak{p}}})] \to [\mathcal{Y}^B(\mathbb{C}_p)],
\]
where the first map is the inverse of the reduction map in Proposition 3.6 and the second is base extension to \(C_p \). The result now follows from Proposition 3.4.

Our next goal is to prove there is an isomorphism as in (3.2). It will be a consequence of this isomorphism that any \(A \in \mathcal{Y}_{B}(S) \) is of the form \(M \otimes_{\mathcal{O}_k} E \) for some \(E \in \mathcal{Y}(S) \) and some \(\mathcal{O}_B \otimes_{\mathbb{Z}} \mathcal{O}_k \)-module \(M \), free of rank 4 over \(\mathbb{Z} \). To prove this result, we will describe a bijection between the set of isomorphism classes of such modules \(M \) and the set \(\{ \mathcal{Y}_{B}(\mathbb{C}) \} \).

For the remainder of this section set \(\mathcal{O} = \mathcal{O}_B \otimes_{\mathbb{Z}} \mathcal{O}_k \), and define \(\mathcal{L} \) to be the set of isomorphism classes of \(\mathcal{O} \)-modules that are free of rank 4 over \(\mathbb{Z} \). Define \(\mathcal{K} \) to be the set of \(\mathcal{O}_B \)-conjugacy classes of ring embeddings \(\mathcal{O}_k \hookrightarrow \mathcal{O}_B \). We begin by examining the local structure of modules in \(\mathcal{L} \).

Lemma 3.8. Fix a prime \(p \) and let \(\Delta \) be the maximal order in the unique quaternion division algebra over \(\mathbb{Q}_p \). Fix an embedding \(\mathbb{Z}_p^2 \hookrightarrow \Delta \) so that there is a decomposition \(\Delta = \mathbb{Z}_p^2 \oplus \mathbb{Z}_p \Pi \), where \(\Pi \) is a uniformizer satisfying \(\Pi^2 = p \) and \(\Pi a = \bar{a} \Pi \) for all \(a \in \mathbb{Z}_p^2 \). Then any ring homomorphism \(f : \Delta \rightarrow M_2(\mathbb{Z}_p^2) \) is \(\text{GL}_2(\mathbb{Z}_p^2) \)-conjugate to exactly one of the following two maps:

\[
\begin{align*}
 f_1 : a + b\Pi &\mapsto \begin{bmatrix} a & b \\ b & \bar{a} \end{bmatrix}, \\
 f_2 : a + b\Pi &\mapsto \begin{bmatrix} a & pb \\ 0 & \bar{a} \end{bmatrix}.
\end{align*}
\]

The proof uses the general ideas of the proof of [17, Theorem 1.4].

Proof. The group \(M = \mathbb{Z}_p^2 \oplus \mathbb{Z}_p \) is a left \(\mathbb{Z}_p^2 \)-module via componentwise multiplication, and a right \(\Delta \)-module via matrix multiplication \(\begin{bmatrix} a & b \\ b & \bar{a} \end{bmatrix} f(x) \), viewing elements of \(M \) as row vectors. These actions commute, so \(M \) is a \(\Delta \otimes_{\mathbb{Z}_p} \mathbb{Z}_p^2 \)-module. There is an isomorphism of rings \(\Delta \otimes_{\mathbb{Z}_p} \mathbb{Z}_p^2 \cong R_1 \), where \(R_1 \) is the standard Eichler order of level 1 in \(M_2(\mathbb{Z}_p^2) \). Any \(R_1 \)-module which is free of finite rank over \(\mathbb{Z}_p \) is a direct sum of copies of \(\Delta \) and \(m_\Delta \), where \(m_\Delta \in \Delta \) is the unique maximal ideal ([16, Chapter 9]). By comparing \(\mathbb{Z}_p \)-ranks, we see that there is an isomorphism of \(\Delta \otimes_{\mathbb{Z}_p} \mathbb{Z}_p^2 \)-modules \(M \rightarrow \Delta \) or \(M \rightarrow m_\Delta \). The rest of the proof is an easy exercise.

Lemma 3.9. Let \(p \) be a prime number. For \(p \nmid d_B \) there is a unique isomorphism class of \(\mathcal{O}_p \)-modules free of rank 4 over \(\mathbb{Z}_p \) and for \(p \mid d_B \) there are two isomorphism classes.

Proof. First suppose \(p \nmid d_B \). In this case,

\[
\mathcal{O}_p \cong \mathcal{O}_{B,p} \otimes_{\mathbb{Z}_p} \mathcal{O}_k,p \cong M_2(\mathcal{O}_k,p),
\]

and any \(\mathcal{O}_p \)-module that is free of rank 4 over \(\mathbb{Z}_p \) is isomorphic to \(\mathcal{O}_k,p \oplus \mathcal{O}_k,p \), with the natural left action of \(M_2(\mathcal{O}_k,p) \). Now suppose \(p \mid d_B \), so \(\mathcal{O}_p \cong \Delta \otimes_{\mathbb{Z}_p} \mathbb{Z}_p^2 \). By the proof of Lemma 3.8 there are two isomorphism classes of modules over this ring that are free of rank 4 over \(\mathbb{Z}_p \).

Now we will show that the three sets \(\mathcal{K} \), \(\mathcal{L} \), and \(\{ \mathcal{Y}_{B}(\mathbb{C}) \} \) are all in bijection.

Proposition 3.10. There is a bijection \(\mathcal{K} \rightarrow \mathcal{L} \).

Proof. Let \(\Theta : \mathcal{O}_k \rightarrow \mathcal{O}_B \) be a representative of an \(\mathcal{O}_B \)-conjugacy class of embeddings and define \(f : \mathcal{K} \rightarrow \mathcal{L} \) by sending \(\Theta \) to the \(\mathbb{Z}_p \)-module \(L_\Theta = \mathcal{O}_B \), viewed as a right \(\mathcal{O}_k \)-module through \(\Theta \) (and multiplication on the right) and a left \(\mathcal{O}_B \)-module through multiplication on the left. The isomorphism class of this \(\mathcal{O} \)-module only depends on \(\Theta \) through its \(\mathcal{O}_B \)-conjugacy class. The map \(f \) is easily seen to be a bijection, using that the group \(\text{Cl}(\mathcal{O}_k) \) acts on the sets \(\mathcal{K} \) and \(\mathcal{L} \).
Proposition 3.11. There is a bijection $\mathcal{L} \to [\mathcal{Y}^B(\mathbb{C})]$.

Proof. Let $M \in \mathcal{L}$. Then $V = M \otimes_{\mathbb{Z}} \mathbb{R}$ is a 4-dimensional \mathbb{R}-vector space with M a \mathbb{Z}-lattice in V. The action of O_k on M induces a map $k \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{C} \to \text{End}(V)$, turning V into a \mathbb{C}-vector space. Define a function $\mathcal{L} \to [\mathcal{Y}^B(\mathbb{C})]$ by sending M to the CM false elliptic curve with complex points V/M. The inverse $[\mathcal{Y}^B(\mathbb{C})] \to \mathcal{L}$ is given by $A \mapsto H_1(A(\mathbb{C}), \mathbb{Z})$. □

Define an equivalence relation on the set \mathcal{K} according to $\Theta \sim \Theta'$ if and only if the induced maps $\tilde{\Theta}, \tilde{\Theta}' : O_k \to O_B/m_B$ are equal. Let \mathcal{K}' be the set of equivalence classes under this relation. Under the bijection $\mathcal{K} \to \mathcal{L}$, this equivalence relation corresponds to the following equivalence relation on \mathcal{L}': $M \sim M'$ if and only if $M_t \cong M'_t$ as O_t-modules for all primes ℓ (note by Lemma 3.9 that this really is only a condition at each prime dividing d_B). Let \mathcal{L}' be the set of equivalence classes under this relation. We know that the group $W_0 \times \text{Cl}(O_k)$ acts simply transitively on the set $[\mathcal{Y}^B(\mathbb{C})]$, so its natural actions on \mathcal{K} and \mathcal{L} are also simply transitive.

The elements of \mathcal{L}' can be thought of as collections of O_t-modules $\{M_t\}_t$ indexed by the prime numbers. The action of W_0 on \mathcal{L}' induces an action on \mathcal{L}'. Explicitly, for $\ell \mid d_B$, the Atkin-Lehner operator $w_\ell \in W_0$ interchanges the two isomorphism classes of modules M_t over O_t. It follows that under the action of $W_0 \times \text{Cl}(O_k)$ on \mathcal{L}', the group $\text{Cl}(O_k)$ acts simply transitively on each equivalence class under \sim and the group W_0 acts simply transitively on the set of equivalence classes \mathcal{L}'. The corresponding results hold for the set \mathcal{K}, so in particular $\#\mathcal{K}' = |W_0| = 2^r$, where r is the number of primes dividing d_B. Since there are 2^r ring homomorphisms $O_k \to O_B/\mathfrak{m}_B$, each such homomorphism arises as the reduction of a homomorphism $O_k \to O_B$.

The equivalence relation \sim on \mathcal{K} induces an equivalence relation on the set $[\mathcal{Y}^B(\mathbb{C})]$ determined by the following: if $[\Theta]$ is the equivalence class of $\Theta \in \mathcal{K}$, then $[\Theta]$ is in bijection with $[\mathcal{Y}^B(\tilde{\Theta})(\mathbb{C})]$. It follows that the natural action of $\text{Cl}(O_k)$ on $[\mathcal{Y}^B(\tilde{\Theta})(\mathbb{C})]$ is simply transitive. The same statements hold with $[\mathcal{Y}^B(\tilde{\Theta})(\mathbb{F}_p)]$ in place of $[\mathcal{Y}^B(\tilde{\Theta})(\mathbb{C})]$.

Suppose (E, κ) is an elliptic curve over an O_L-scheme S with CM by O_k and let $M \in \mathcal{L}$. From M being a finitely generated projective O_k-module, locally free of rank 2, there is an abelian scheme $M \otimes_{O_k} E \to S$ of relative dimension 2 with $(M \otimes_{O_k} E)(X) = M \otimes_{O_k} E(X)$ for any S-scheme X. There are commuting actions

$$i_M : O_B \to \text{End}_S(M \otimes_{O_k} E), \quad \kappa_M : O_k \to \text{End}_S(M \otimes_{O_k} E)$$

given on points by

$$i_M(x)(m \otimes z) = x \cdot m \otimes z, \quad \kappa_M(a)(m \otimes z) = m \otimes \kappa(a)(z),$$

so $M \otimes_{O_k} E$ is a false elliptic curve over S with complex multiplication by O_k.

If $\Theta : O_k \to O_B$ is a false elliptic curve, we will sometimes write $\mathcal{Y}^B(\Theta)$ for $\mathcal{Y}^B(\tilde{\Theta})$. Recall that \mathcal{Y} is the stack of all elliptic curves over O_L-schemes with CM by O_k.

Theorem 3.12. Fix representatives $\Theta_1, \ldots, \Theta_m \in \mathcal{K}$ of the $m = 2^r$ classes in \mathcal{K}'. There is an isomorphism of stacks over $\text{Spec}(O_L)$

$$f : \bigsqcup_{d=1}^m \mathcal{Y} \to \mathcal{Y}^B,$$

defined by $(E, \mathfrak{d}) \mapsto L_{\Theta_d} \otimes_{O_k} E$. This isomorphism induces an equivalence of categories $\mathcal{Y} \to \mathcal{Y}^B(\Theta)$ for any $[\Theta] \in \mathcal{K}'$.

The notation \((E, d)\) means \(E\) is an object of the \(d\)-th copy of \(\mathcal{Y}\) in the disjoint union. Therefore we obtain an isomorphism

\[
\bigcup_{\theta : \mathcal{O}_k \to \mathcal{O}_B/m_B} \mathcal{Y}^B(\theta) \to \mathcal{Y}^B.
\]

In particular, any \(A \in \mathcal{Y}^B(S)\) is isomorphic to \(L_{\Theta} \otimes_{\mathcal{O}_k} E\) for some \(\Theta : \mathcal{O}_k \to \mathcal{O}_B\) and some \(E \in \mathcal{Y}(S)\).

Proof. The idea of the proof is to introduce level structure to the stacks \(\mathcal{Y}\) and \(\mathcal{Y}^B\), show that these new spaces are schemes, and then show \(f\) induces an isomorphism between these schemes. We begin by showing \(f\) induces a bijection on geometric points. Let \(k = \mathbb{C}\) or \(k = \mathbb{F}_p\) and let \(X \subset [\mathcal{Y}^B(k)]\) be the image of the map

\[
f_k : \bigcup_{d=1}^m [\mathcal{Y}(k)] \to [\mathcal{Y}^B(k)]
\]

on \(k\)-points determined by \(f\). The group \(W_0 \times \text{Cl}(\mathcal{O}_k)\) acts simply transitively on \([\mathcal{Y}^B(k)]\) and this action preserves the subset \(X\), so \(f_k\) is surjective. Now, it is well-known that \(\text{Cl}(\mathcal{O}_k)\) acts simply transitively on \([\mathcal{Y}(k)]\), and thus \(f_k\) is a bijection since

\[
\# \bigcup_{d=1}^m [\mathcal{Y}(k)] = m \cdot \# [\mathcal{Y}(k)] = |W_0| \cdot |\text{Cl}(\mathcal{O}_k)| = \# [\mathcal{Y}^B(k)].
\]

Fix an integer \(n \geq 1\) and set \(S = \text{Spec}(\mathcal{O}_L)\) and \(S_n = \text{Spec}(\mathcal{O}_L[n^{-1}])\). For \(n\) prime to \(d_B\) define \(\mathcal{Y}^B(n)\) to be the category fibered in groupoids over \(S_n\) with \(\mathcal{Y}^B(n)(T)\) the category of quadruples \((A, i, \kappa, \nu)\) where \((A, i, \kappa) \in \mathcal{Y}^B(T)\) and \(\nu : (\mathcal{O}_B/(n))_T \to A[n]\)

is an \(\mathcal{O}\)-linear isomorphism of schemes, where \((\mathcal{O}_B/(n))_T\) is the constant group scheme over the \(S_n\)-scheme \(T\) associated with \(\mathcal{O}_B/(n)\). Here we are viewing \(\mathcal{O}_B/(n)\) as a left \(\mathcal{O}_B\)-module through multiplication on the left and a right \(\mathcal{O}_k\)-module through a fixed inclusion \(\mathcal{O}_k \hookrightarrow \mathcal{O}_B\) and multiplication on the right. Forgetting \(\nu\) defines a finite étale representable morphism \(\mathcal{Y}^B(n) \to \mathcal{Y}^B \times_S S_n\), so \(\mathcal{Y}^B(n)\) is a stack, finite étale over \(S_n\). A similar argument to that used in the proof of [2, Lemma 2.2] shows that for \(n \geq 3\) prime to \(d_B\), any object of \(\mathcal{Y}^B(n)\) has no nontrivial automorphisms. It follows from this fact, as in the proof of [2, Corollary 2.3], that \(\mathcal{Y}^B(n)\) is a scheme.

For any \(n \geq 1\) define \(\mathcal{Y}(n)\) to be the category fibered in groupoids over \(S_n\) with \(\mathcal{Y}(n)(T)\) the category of triples \((E, \kappa, \nu)\) where \((E, \kappa) \in \mathcal{Y}(T)\) and \(\nu : (\mathcal{O}_k/(n))_T \to E[n]\)

is an \(\mathcal{O}_k\)-linear isomorphism of schemes. As above, \(\mathcal{Y}(n)\) is a scheme, finite étale over \(S_n\). Let \(G_n = \text{Aut}_{\mathcal{O}_k}(\mathcal{O}_k/(n)) \cong (\mathcal{O}_k/(n))^\times\). There is an action of the finite group scheme \((G_n)_{S_n}\) on the scheme \(\mathcal{Y}(n)\), defined on \(T\)-points, for any connected \(S_n\)-scheme \(T\), by

\[
g \cdot (E, \kappa, \nu) = (E, \kappa, \nu \circ g^{-1}).
\]

There is an associated quotient stack \(\mathcal{Y}(n)/(G_n)_{S_n} \to S_n\), defined in [20, Example 7.17], and there is an isomorphism of stacks \(\mathcal{Y}(n)/(G_n)_{S_n} \to \mathcal{Y} \times_S S_n\) such that the composition

\[
\mathcal{Y}(n) \to \mathcal{Y}(n)/(G_n)_{S_n} \cong \mathcal{Y} \times_S S_n
\]

is the morphism defined by forgetting the level structure.
Note that there is an isomorphism of groups \(\operatorname{Aut}_O(\mathcal{O}_B/(n)) \cong (\mathcal{O}_k/(n))^\times \), so \((G_n)_{S_n}\) also acts on \(\mathcal{Y}_B(n) \), the action defined in the same way as above. As before there is an isomorphism of stacks \(\mathcal{Y}_B(n)/(G_n)_{S_n} \rightarrow \mathcal{Y}_B \times_S S_n \) such that the composition

\[
\mathcal{Y}_B(n) \rightarrow \mathcal{Y}_B(n)/(G_n)_{S_n} \rightarrow \mathcal{Y}_B \times_S S_n
\]

is the forgetful morphism. The base change

\[
f_n = f \times \text{id} : \bigsqcup_{d=1}^m \mathcal{Y} \times_S S_n \rightarrow \mathcal{Y}_B \times_S S_n
\]

induces a morphism of schemes over \(S_n \)

\[
f'_n : \bigsqcup_{d=1}^m \mathcal{Y}(n) \rightarrow \mathcal{Y}(n)
\]

given on \(T \)-points by \((E, \nu, d) \mapsto (L_{\Theta_d} \otimes_{\mathcal{O}_k} E, \nu')\), where \(\nu' \) is the composition

\[
(\mathcal{O}_B/(n))_T \cong L_{\Theta_d} \otimes_{\mathcal{O}_k} \mathcal{O}_k/(n) \xrightarrow{\text{id} \otimes \nu} L_{\Theta_d} \otimes_{\mathcal{O}_k} E[n] \cong (L_{\Theta_d} \otimes_{\mathcal{O}_k} E)[n].
\]

For \(k = \mathbb{C} \) or \(k = \mathbb{F}_p \), it follows easily from \(f_k \) being a bijection that \(f'_n \) defines a bijection

\[
(f'_n)_k : \bigsqcup_{d=1}^m [\mathcal{Y}(n)(k)] \rightarrow [\mathcal{Y}_B(n)(k)].
\]

The morphism \(f'_n \) is \((G_n)_{S_n}\)-equivariant, so there is a morphism of stacks

\[
\bigsqcup_{d=1}^m \mathcal{Y}(n)/(G_n)_{S_n} \rightarrow \mathcal{Y}_B(n)/(G_n)_{S_n}
\]

inducing \(f_n \) under the isomorphisms described above. It follows that to show \(f_n \) is an isomorphism, it suffices to show \(f'_n \) is an isomorphism. As \(f'_n \) is a finite étale morphism of \(S_n \)-schemes inducing a bijection on geometric points, it is an isomorphism. Choosing relatively prime integers \(n, n' \geq 3 \) prime to \(d_B \), the morphisms \(f_n \) and \(f_{n'} \) being isomorphisms implies \(f \) is an isomorphism.

For the final statement of the theorem, let \(S \) be any \(\mathcal{O}_L \)-scheme and fix an integer \(1 \leq d \leq m \). It follows directly from the definitions that any CM false elliptic curve of the form \(L_{\Theta_d} \otimes_{\mathcal{O}_k} E \) for some \(E \in \mathcal{Y}(S) \) lies in \(\mathcal{Y}_B([\Theta_d])(S) \). Conversely, suppose \((A, i, \kappa) \in \mathcal{Y}_B([\Theta_d])(S) \). Then \(A \cong L_{\Theta_d'} \otimes_{\mathcal{O}_k} E \) for some \(E \in \mathcal{Y}(S) \) and a unique \(1 \leq d' \leq m \), so the diagram

\[
\begin{array}{ccc}
\mathcal{O}_k & \xrightarrow{\kappa_{\mathcal{O}_B/m_B}} & \operatorname{End}_{\mathcal{O}_B/m_B}(A[m_B]) \\
\downarrow{\eta} & & \downarrow{\nu} \\
\mathcal{O}_B/m_B & \xrightarrow{f} & \mathcal{O}_B/m_B
\end{array}
\]

commutes for \(\eta = \tilde{\Theta}_d \) and \(\eta = \tilde{\Theta}_{d'} \). Picking any geometric point \(\pi \) of \(S \), the above diagram still commutes with \(A \) replaced with \(A_{\pi} \). But the map \(\mathcal{O}_B/m_B \rightarrow \operatorname{End}_{\mathcal{O}_B/m_B}(A_{\pi}[m_B]) \) is an isomorphism by Corollary 5.9, proved below only using the first paragraph of this proof. Therefore \(\tilde{\Theta}_d = \tilde{\Theta}_{d'} \), so \(d = d' \), which shows \(f \) defines an equivalence of categories \(\mathcal{Y} \rightarrow \mathcal{Y}_B([\Theta_d]) \). \(\square \)
Corollary 3.13. Suppose S is an \mathcal{O}_L-scheme and let $(A, i, \kappa) \in \mathcal{W}(S)$. Then the trace of $i(x)$ acting on $\text{Lie}(A)$ is equal to $\text{Trd}(x)$ for any $x \in \mathcal{O}_B$.

Proof. We have $A \cong M \otimes_{\mathcal{O}_k} E$ for some \mathcal{O}-module M and $E \in \mathcal{W}(S)$. Then $\text{Lie}(A) \cong M \otimes_{\mathcal{O}_k} \text{Lie}(E)$ as \mathcal{O}-modules, with \mathcal{O}_B acting on $M \otimes_{\mathcal{O}_k} \text{Lie}(E)$ through its action on M. As $M \cong \mathcal{O}_B$ as a left \mathcal{O}_B-module, the result easily follows. □

Corollary 3.14. Suppose $\tilde{R} \to R$ is a surjection of \mathcal{O}_L-algebras, $x = (A, i, \kappa) \in \mathcal{W}(R)$, and $\tilde{x} = (\tilde{A}, \tilde{i}, \tilde{\kappa}) \in \mathcal{W}(\tilde{R})$ is a deformation of x. Let $\theta : \mathcal{O}_k \to \mathcal{O}_B/\mathfrak{m}_B$ be a ring homomorphism. Then $x \in \mathcal{W}^{\tilde{B}}(\theta)(\check{R})$ if and only if $\tilde{x} \in \mathcal{W}^{\tilde{B}}(\theta)(\tilde{R})$.

Proof. This is a direct consequence of Theorem 3.12. □

3.4. The Dieudonné module. Fix a prime number p and let $W = W(\mathbb{F}_p)$ be the ring of Witt vectors over \mathbb{F}_p, so W is the ring of integers in the completion of the maximal unramified extension of \mathbb{Q}_p. If A is a false elliptic curve over \mathbb{F}_p, we write $D(A)$ for the covariant Dieudonné module of A (that is, the Dieudonné module of $A[p^\infty]$), which is a module over the Dieudonné ring \mathcal{D}, free of rank 4 over W. Recall that there is a unique continuous ring automorphism σ of W inducing the absolute Frobenius $x \mapsto x^p$ on $W/pW \cong \mathbb{F}_p$, and $\mathcal{D} = W\{\mathcal{F}, \mathcal{Y}\}/(\mathcal{F}\mathcal{Y} - p)$ where $W\{\mathcal{F}, \mathcal{Y}\}$ is the non-commutative polynomial ring in two commuting variables \mathcal{F} and \mathcal{Y} satisfying $\mathcal{F}x = \sigma(x)\mathcal{F}$ and $\mathcal{Y}x = \sigma^{-1}(x)\mathcal{Y}$ for all $x \in W$.

Let $A \in \mathcal{W}(\mathbb{F}_p)$, so $A \cong M \otimes_{\mathcal{O}_k} E$ for some $E \in \mathcal{W}(\mathbb{F}_p)$ and some module M over $\mathcal{O} = \mathcal{O}_B \otimes \mathbb{Z}_p \mathcal{O}_k$, free of rank 4 over \mathbb{Z}_p. Let p be the rational prime below \mathfrak{p}. There is an isomorphism of $W \otimes_{\mathbb{Z}_p} \mathcal{O}_p$-modules

$$D(A) \cong M_p \otimes_{\mathcal{O}_k,p} D(E).$$

However, $M_p \cong \mathcal{O}_{k,p} \oplus \mathcal{O}_{k,p}$ as $\mathcal{O}_{k,p}$-modules and thus $D(A) \cong D(E) \oplus D(E)$ as modules over $W \otimes_{\mathbb{Z}_p} \mathcal{O}_{k,p}$, where $\mathcal{O}_{k,p}$ acts on $D(E) \oplus D(E)$ diagonally through its action on $D(E)$. We still have to determine the possibilities for the actions of $\mathcal{O}_{B,p}$ and \mathcal{D} on $D(A)$.

Proposition 3.15. Suppose $A \in \mathcal{W}(\mathbb{F}_p)$ for $p \mid d_B$, with $A \cong M \otimes_{\mathcal{O}_k} E$ for some supersingular E. Fix an isomorphism $\mathcal{O}_{B,p} \cong \Delta$ and a uniformizer $\Pi \in \Delta$ satisfying $\Pi^2 = p$ and $\Pi a = a \Pi$ for all $a \in \mathbb{Z}_p$, where we are viewing $\mathbb{Z}_p \to \Delta$ through the CM action $\mathcal{O}_{k,p} \to \text{End}(E) \otimes_{\mathbb{Z}_p} \mathbb{Z}_p$. Then there is an isomorphism of rings $\text{End}_{\mathcal{O}_{B,p}}(A) \otimes_{\mathbb{Z}_p} \mathbb{Z}_p \cong R_{11}$, where

$$R_{11} = \left\{ \begin{bmatrix} x & y\Pi \\ py\Pi & x \end{bmatrix} : x, y \in \mathbb{Z}_p \right\} \subset M_2(\Delta).$$

Proof. There is the Δ-action on $D(A)$

$$D(i) : \Delta \to \text{End}_{\mathcal{O}_{B,p}}(D(A)) \cong M_2(\text{End}_{\mathcal{O}_{B,p}}(D(E))) \cong M_2(\mathbb{Z}_{p^{2}}).$$

By Lemma 3.8 there are two possibilities for $D(i)$ up to $\text{GL}_2(\mathbb{Z}_p)$-conjugacy, f_1 and f_2, and we may assume $D(i)$ is equal to f_1 or f_2 in computing

$$\text{End}_{\mathcal{O}_{B,p}}(A) \otimes_{\mathbb{Z}_p} \mathbb{Z}_p \cong \text{End}_{\mathcal{O}_{B,p}}(D(A)) \cong C_{M_2(\Delta)}(\Delta).$$

If $D(i) = f_1$ then a computation shows $C_{M_2(\Delta)}(\Delta) = R_{11}$. In the case of $D(i) = f_2$ we have $C_{M_2(\Delta)}(\Delta) = R_{22}$, where

$$R_{22} = \left\{ \begin{bmatrix} x & py\Pi \\ y\Pi & x \end{bmatrix} : x, y \in \mathbb{Z}_p \right\} \cong R_{11}. \quad \Box$$
We know that for \(p \mid d_B \) there are two isomorphism classes of modules over \(W \otimes_{\mathbb{Z}_p} \mathcal{O}_p \) that are free of rank 4 over \(W \), and the proof of the previous proposition gives us explicit coordinates for each of these modules (which we will use for the \(W \otimes_{\mathbb{Z}_p} \mathcal{O}_p \)-module \(D(A) \)). To describe this, identify \(\Delta \) with a subring of \(M_2(\mathbb{Z}_p^2) \subset M_2(W) \) by

\[
a + b\Pi \mapsto \begin{bmatrix} a & pb \\ b & \pi \end{bmatrix},
\]

and use this to view \(\mathbb{Z}_p^2 \subset \Delta \) inside \(M_2(\mathbb{Z}_p^2) \). Then there is a basis \(\{e_n\} \) for the free of rank 4 \(W \)-module \(D(A) \cong D(E) \oplus D(E) \) relative to which the \(\Delta \)-action on \(D(A) \) is given by one of the two maps \(f_1, f_2 : \Delta \to \text{End}_W(D(A)) \cong M_4(W) \) of Lemma 3.8:

\[
f_1(a + b\Pi) = \begin{bmatrix} a & 0 & b & 0 \\ 0 & \pi & 0 & \pi b \\ \pi b & 0 & \pi & 0 \\ 0 & pb & 0 & a \end{bmatrix}, \quad f_2(a + b\Pi) = \begin{bmatrix} a & 0 & pb & 0 \\ 0 & \pi & 0 & \pi b \\ \pi b & 0 & \pi & 0 \\ 0 & b & 0 & a \end{bmatrix}.
\]

The action of \(\mathcal{O}_{k,p} \cong \mathbb{Z}_p^2 \) on \(D(A) \) is necessarily given in this basis by

\[
a \mapsto \text{diag}(a, \pi, a, \pi).
\]

Furthermore, using the basis \(\{e_n\} \) to view \(R_{11} \cong \text{End}_{\mathcal{O}_B \otimes \mathbb{Z}_p}(D(A)) \subset M_4(W) \), we can express any

\[
f = \begin{bmatrix} x & py\Pi \\ py\Pi & x \end{bmatrix} \in R_{11}
\]

as an element of \(M_4(W) \) by

\[
f = \begin{bmatrix} x & 0 & 0 & py \\ 0 & \pi & 0 & \pi y \\ 0 & p^2y & x & 0 \\ py & 0 & 0 & \pi \end{bmatrix}.
\]

Note that (3.3) comes from choosing a basis \(\{v_1, v_2\} \) of \(D(E) \) with \(\mathcal{F} = \mathcal{V} \) satisfying \(\mathcal{F}(v_1) = v_2 \) and \(\mathcal{F}(v_2) = pv_1 \), so we have proved the following.

Proposition 3.16. With notation as above, there is a \(W \)-basis \(\{e_1, e_2, e_3, e_4\} \) for \(D(A) \) relative to which the action of \(\Delta \) on \(D(A) \) is given by one of the matrices (3.4), the action of \(\mathcal{O}_{k,p} \) is given by (3.5), the action of \(\mathcal{F} = \mathcal{V} \) is determined by

\[
\mathcal{F}(e_1) = e_2, \quad \mathcal{F}(e_2) = pe_1, \quad \mathcal{F}(e_3) = e_4, \quad \mathcal{F}(e_4) = pe_3,
\]

and any \(f \in \text{End}_{\mathcal{O}_B \otimes \mathbb{Z}_p}(D(A)) \) is given by a matrix of the form (3.6).

Proposition 3.15 gives a description of \(\text{End}_{\mathcal{O}_p}(A) \otimes_{\mathbb{Z}_p} \mathbb{Z}_p \) in terms of coordinates, which is best suited for computations. The next result gives the abstract structure of this ring.

Proposition 3.17. There is an isomorphism of rings \(R_{11} \cong R_2 \), where

\[
R_2 = \begin{bmatrix} \mathbb{Z}_p & \mathbb{Z}_p \\ p^2\mathbb{Z}_p & \mathbb{Z}_p \end{bmatrix}
\]

is the standard Eichler order of level 2 in \(M_2(\mathbb{Q}_p) \).

Proof. The proof is identical to a calculation carried out in [5, pp. 26-27]. \(\square \)
4. Moduli spaces

We continue with the same notation of K_1, K_2, F, and K as in Section 1.1. Recall that we assume any prime dividing d_B is inert in K_1 and K_2. In particular, each $p | d_B$ is nonsplit in K_1 and K_2, which implies K_1 and K_2 embed into B, or equivalently, they split B. If a prime number p is inert in both K_1 and K_2, then p is split in F and each prime of F lying over p is inert in K. If p is ramified in one of K_1 or K_2, then p is ramified in F and the unique prime of F lying over p is inert in K.

Definition 4.1. A CM pair over an \mathcal{O}_K-scheme S is a pair $(\mathbf{A}_1, \mathbf{A}_2)$ where \mathbf{A}_1 and \mathbf{A}_2 are false elliptic curves over S with complex multiplication by \mathcal{O}_{K_1} and \mathcal{O}_{K_2}, respectively. An isomorphism between CM pairs $(\mathbf{A}_1', \mathbf{A}_2') \to (\mathbf{A}_1, \mathbf{A}_2)$ is a pair (f_1, f_2) where each $f_j : A'_j \to A_j$ is an \mathcal{O}_{K_j}-linear isomorphism of false elliptic curves.

Given a CM pair $(\mathbf{A}_1, \mathbf{A}_2)$ over an \mathcal{O}_K-scheme S and a morphism of \mathcal{O}_K-schemes $T \to S$, there is a CM pair $(\mathbf{A}_1, \mathbf{A}_2)|_T$ over T defined as the base change to T. For every CM pair $(\mathbf{A}_1, \mathbf{A}_2)$ over an \mathcal{O}_K-scheme S, set

\[L(\mathbf{A}_1, \mathbf{A}_2) = \text{Hom}_\mathcal{O}_B(A_1, A_2), \quad V(\mathbf{A}_1, \mathbf{A}_2) = L(\mathbf{A}_1, \mathbf{A}_2) \otimes \mathbb{Q}. \]

If S is connected we have the quadratic form \deg^* on $L(\mathbf{A}_1, \mathbf{A}_2)$. Let $[f, g] = f^t \circ g + g^t \circ f$ be the associated bilinear form. Then $\mathcal{O}_K = \mathcal{O}_{K_1} \otimes \mathcal{O}_{K_2}$ acts on the \mathbb{Z}-module $L(\mathbf{A}_1, \mathbf{A}_2)$ by

\[(x_1 \otimes x_2) \cdot f = \kappa_2(x_2) \circ f \circ \kappa_1(\mathfrak{m}).\]

Proposition 4.2. Let $(\mathbf{A}_1, \mathbf{A}_2)$ be a CM pair. There is a unique F-bilinear form $[\cdot, \cdot]_{\text{CM}}$ on $V(\mathbf{A}_1, \mathbf{A}_2)$ satisfying $[f, g] = \text{Tr}_{F/\mathbb{Q}}[f, g]_{\text{CM}}$. Under this pairing,

\[[L(\mathbf{A}_1, \mathbf{A}_2), L(\mathbf{A}_1, \mathbf{A}_2)]_{\text{CM}} \subset \mathcal{D}^{-1}. \]

The quadratic form $\deg_{\text{CM}}(f) = \frac{1}{2}[f, f]_{\text{CM}}$ is the unique F-quadratic form on $V(\mathbf{A}_1, \mathbf{A}_2)$ satisfying $\deg^*(f) = \text{Tr}_{F/\mathbb{Q}} \deg_{\text{CM}}(f)$.

Proof. This is the same as the proof of [10, Proposition 2.2]. \[\square\]

Definition 4.3. For $j \in \{1, 2\}$ define \mathcal{Y}_j^B to be the stack \mathcal{Y}^B with $k = K_j$ and $L = K$. For any ring homomorphism $\theta_j : \mathcal{O}_{K_j} \to \mathcal{O}_B/\mathfrak{m}_B$, define $\mathcal{Y}_j^B(\theta_j)$ to be the stack $\mathcal{Y}^B(\theta_j)$ with $k = K_j$ and $L = K$.

From now on, we write \mathcal{Y}^B to mean the category defined in Definition 3.2 for some fixed imaginary quadratic field k and finite extension L.

Definition 4.4. Let $\theta : \mathcal{O}_K \to \mathcal{O}_B/\mathfrak{m}_B$ be a ring homomorphism. Define \mathcal{Y}_θ^B to be the category whose objects are CM pairs $(\mathbf{A}_1, \mathbf{A}_2)$ over \mathcal{O}_K-schemes such that \mathbf{A}_j is an object of $\mathcal{Y}_j^B(\theta_j)$ for $j = 1, 2$, where $\theta_j = \theta|\mathcal{O}_{K_j}$. A morphism $(\mathbf{A}_1', \mathbf{A}_2') \to (\mathbf{A}_1, \mathbf{A}_2)$ between two such pairs defined over \mathcal{O}_K-schemes T and S, respectively, is a morphism of \mathcal{O}_K-schemes $T \to S$ together with an isomorphism of CM pairs $(\mathbf{A}_1', \mathbf{A}_2') \cong (\mathbf{A}_1, \mathbf{A}_2)|_T$ over T.

Definition 4.5. Let $\theta : \mathcal{O}_K \to \mathcal{O}_B/\mathfrak{m}_B$ be a ring homomorphism. For any $\alpha \in F^\times$ define $\mathcal{Y}_{\theta, \alpha}^B$ to be the category whose objects are triples $(\mathbf{A}_1, \mathbf{A}_2, f)$ where $(\mathbf{A}_1, \mathbf{A}_2) \in \mathcal{Y}_\theta^B(S)$ for some \mathcal{O}_K-scheme S and $f \in L(\mathbf{A}_1, \mathbf{A}_2)$ satisfies $\deg_{\text{CM}}(f) = \alpha$ on every connected component of S. A morphism

\[(\mathbf{A}_1', \mathbf{A}_2', f') \to (\mathbf{A}_1, \mathbf{A}_2, f)\]
between two such triples, with \((A_1', A_2')\) and \((A_1, A_2)\) CM pairs over \(O_K\)-schemes \(T\) and \(S\), respectively, is a morphism of \(O_K\)-schemes \(T \rightarrow S\) together with an isomorphism
\[
(A_1', A_2') \rightarrow (A_1, A_2)/T
\]
of CM pairs over \(T\) compatible with \(f\) and \(f'\).

The categories \(\mathcal{X}_a^B\) and \(\mathcal{X}_{a,\alpha}^B\) are stacks of finite type over \(\text{Spec}(O_K)\). For each positive integer \(m\) define \(\mathcal{X}_m^B\) to be the stack over \(\text{Spec}(O_K)\) with \(\mathcal{X}_m^B(S)\) the category of triples \((A_1, A_2, f)\) where \(A_j \in \mathcal{Y}_j^B(S)\) and \(f \in L(A_1, A_2)\) satisfies \(\text{deg}^\ast(f) = m\) on every connected component of \(S\). It follows from Theorem 3.12 that there is a decomposition
\[
\mathcal{X}_m^B = \bigsqcup_{\alpha \in F^\times} \bigsqcup_{\theta: O_K \rightarrow O_B/mB} \mathcal{X}_{\theta,\alpha}^B,
\]
(4.1)

A false elliptic curve \((A, i)\) over \(\overline{F}_p\) is supersingular if the underlying abelian variety \(A\) is supersingular. A CM pair \((A_1, A_2)\) over \(\overline{F}_p\) is supersingular if the underlying abelian varieties \(A_1\) and \(A_2\) are supersingular. If \(p\) is a prime dividing \(d_B\), or more generally, a prime nonsplit in \(K_j\), then any \(A \in \mathcal{Y}_j^B(\overline{F}_p)\) is necessarily supersingular.

Proposition 4.6. Let \(k\) be an algebraically closed field of characteristic \(p \geq 0\) and let \(\theta: O_K \rightarrow O_B/mB\) be a ring homomorphism. Let \(\alpha \in F^\times\) and suppose \((A_1, A_2, f) \in \mathcal{X}_{\theta,\alpha}(k)\).

(a) We have \(p > 0\) and \((A_1, A_2)\) is a supersingular CM pair.

(b) There is an isomorphism of \(F\)-quadratic spaces
\[
(V(A_1, A_2), \text{deg}_{CM}) \cong (K, \beta \cdot N_K/F)
\]
for some totally positive \(\beta \in F^\times\), determined up to multiplication by a norm from \(K^\times\).

(c) There is an isomorphism of \(Q\)-quadratic spaces
\[
(V(A_1, A_2), \text{deg}^\ast) \cong (B^{(p)}, Nrd),
\]
where \(Nrd\) is the reduced norm on \(B^{(p)}\).

(d) If \(p\) does not divide \(d_B\) then it is nonsplit in \(K_1\) and \(K_2\).

Proof. The proof is very similar to that of [10, Proposition 2.6]. \(\square\)

For any \(O_K\)-scheme \(S\) and any ring homomorphism \(\theta: O_K \rightarrow O_B/m_B\), the group \(\Gamma = \text{Cl}(O_{K_1}) \times \text{Cl}(O_{K_2})\) acts on the set \(\mathcal{X}_\theta^B(S)\) by
\[
(a_1, a_2) \cdot (A_1, A_2) = (a_1 \otimes_{O_{K_1}} A_1, a_2 \otimes_{O_{K_2}} A_2).
\]

The only thing to note is that the diagram (3.1) commutes for the CM false elliptic curve \(a_j \otimes_{O_{K_j}} A_j\) since it commutes for \(A_j\) and there is an isomorphism of \(O_{K_j}\)-module schemes over \(S\)
\[
(a_j \otimes_{O_{K_j}} A_j)[m_B] \cong a_j \otimes_{O_{K_j}} A_j[m_B].
\]

Lemma 4.7. Let \(S\) be an \(O_K\)-scheme and for \(j \in \{1, 2\}\) set \(w_j = |O_{K_j}^\times|\). Every \(x \in \mathcal{X}_\theta^B(S)\), viewed as an element of the set \([\mathcal{X}_\theta^B(S)]\), has trivial stabilizer in \(\Gamma\) and satisfies \(|\text{Aut}_{\mathcal{X}_\theta^B}(x)| = w_1 w_2\).

Proof. Set \(O_j = O_B \otimes_{\mathbb{Z}} O_{K_j}\). By [14, Corollary 6.2] and our classification of endomorphism rings of false elliptic curves over algebraically closed fields, \(\text{End}_{O_j}(A_j) \cong O_{K_j}\) as an \(O_{K_j}\)-algebra. The first claim then follows as in the proof of [10, Lemma 2.16]. Next, by definition, an automorphism of \(x\) in \(\mathcal{X}_\theta^B(S)\) is a pair \((a_1, a_2)\) with \(a_j \in \text{Aut}_{O_j}(A_j) \cong O_{K_j}^\times\). \(\square\)
5. Local quadratic spaces

This section and the next form the technical core of this paper. In this section we (essentially) count the number of geometric points of \(\mathcal{X}_{\theta, o} \). This comes from a careful examination of the quadratic spaces \((V_t(A_1, A_2), \degCM)\) for each prime \(\ell \), where

\[
L_t(A_1, A_2) = L(A_1, A_2) \otimes \mathbb{Z}_\ell, \quad V_t(A_1, A_2) = V(A_1, A_2) \otimes \mathbb{Q}_\ell.
\]

The methods of the proofs follow [10] quite closely. Suppose \(\ell \) is a prime dividing \(d_B \), let \(k \) be an algebraically closed field, and let \(A \in \mathcal{Y}^B(k) \). Define the \(m_\ell \)-torsion of \(A \) as

\[
A[m_\ell] = \ker(i(x)) : A[\ell] \to A[\ell],
\]

where \(x \) is any element of \(m_\ell \) whose image generates the principal ideal \(m_\ell / O_B \subset O_B / \ell O_B \). This is a flat commutative group scheme over \(\text{Spec}(k) \) of order \(\ell^2 \).

Lemma 5.1. Suppose \(A \in \mathcal{Y}^B(k) \) for \(k = \mathbb{C} \) or \(k = \overline{\mathbb{F}}_p \) and \(\ell \neq p \) is a prime dividing \(d_B \). There is an isomorphism of \(O_B / m_\ell \)-algebras \(\text{End}_{O_B / m_\ell}(A[m_\ell]) \cong O_B / m_\ell \).

Proof. Since \(\ell \neq p \), the group scheme \(A[\ell] \) is étale over \(k \), so \(A[m_\ell] \) is étale over \(k \) and thus constant. It follows that the natural map

\[
\text{End}_{O_B / m_\ell}(A[m_\ell]) \to \text{End}_{O_B / m_\ell}(A[m_\ell](k))
\]

is an isomorphism. The group \(A[m_\ell](k) \) is a vector space of dimension 1 over \(O_B / m_\ell \), which proves the result. \(\square \)

5.1. The case of \(\ell \neq p \). Fix a prime ideal \(\mathfrak{P} \subset O_K \) of residue characteristic \(p \), where \(p \) is nonsplit in \(K_1 \) and \(K_2 \), a ring homomorphism \(\theta : O_K \to O_B / m_\ell \), and a CM pair \((A_1, A_2) \in \mathcal{Y}^B(\overline{\mathbb{F}}_p)\) (necessarily supersingular).

Proposition 5.2. Let \(\ell \neq p \) be a prime. There is a \(K_\ell \)-linear isomorphism of \(F_\ell \)-quadratic spaces

\[
(V_t(A_1, A_2), \degCM) \cong (K_\ell, \beta_\ell \cdot N_{K_\ell/F_\ell})
\]

for some \(\beta_\ell \in F_\ell^* \) satisfying \(\beta_\ell O_{F, \ell} = \mathcal{D}_\ell^{-1} = \mathcal{D}_\ell^{-1} O_{F, \ell} \) if \(\ell \mid d_B \) and \(\beta_\ell O_{F, \ell} = \mathcal{D}_\ell^{-1} \) if \(\ell \nmid d_B \), where \(\ell \) is the prime over \(\ell \) dividing \(\text{ker}(\theta) \cap O_F \). This map takes \(L_t(A_1, A_2) \) isomorphically to \(O_{K, \ell} \).

Proof. We will write \(L_t \) and \(V_t \) for \(L_t(A_1, A_2) \) and \(V_t(A_1, A_2) \). The existence of an isomorphism of quadratic spaces for some \(\beta_\ell \in F_\ell^* \) follows from Proposition 4.6(b). Under this isomorphism, \(L_t \) is sent to a finitely generated \(O_{K, \ell} \)-submodule of \(K_\ell \), that is, a fractional \(O_{K, \ell} \)-ideal. Then since every ideal of \(O_{K, \ell} \) is principal, there is an isomorphism \(V_t \cong K_\ell \) inducing an isomorphism \(L_t \cong O_{K, \ell} \). The \(O_{F, \ell} \)-bilinear form

\[
\{\cdot, \cdot\}_{CM} : L_\ell \times L_\ell \to \mathcal{D}_\ell^{-1}
\]

induces an \(O_{F, \ell} \)-bilinear form \(O_{K, \ell} \times O_{K, \ell} \to \mathcal{D}_\ell^{-1} \) given by \((x, y) \mapsto \beta_\ell \text{Tr}_{K_\ell/F_\ell}(x \overline{y}) \).

The dual lattice of \(O_{K, \ell} \cong L_\ell \) with respect to this pairing is \(L_\ell^* \cong O_{K, \ell} \beta_\ell^{-1} \mathcal{D}_\ell^{-1} O_{K, \ell} \).

First suppose \(\ell \nmid d_B \). There are isomorphisms of \(\mathbb{Z}_\ell \)-modules

\[
L_\ell \cong \text{Hom}_{O_B}(T_\ell(A_1), T_\ell(A_2)) \cong M_2(\mathbb{Z}_\ell)
\]

Under this isomorphism the quadratic form \(\deg^* \) on \(L_\ell \) is identified with the quadratic form \(u \cdot \text{det} \) on \(M_2(\mathbb{Z}_\ell) \) for some \(u \in \mathbb{Z}_\ell^* \). The lattice \(M_2(\mathbb{Z}_\ell) \subset M_2(\mathbb{Q}_\ell) \) is self dual relative to \(\text{det} \), so from the isomorphism

\[
L_\ell^* / L_\ell \cong \beta_\ell^{-1} \mathcal{D}^{-1} O_{K, \ell} / O_{K, \ell},
\]
Lemma 5.3. If results. Proof. The case of 5.2. Recall that \(\phi \) on \(\Lambda \) must be of the form \(\Lambda = \Lambda' \) : \(\Lambda \) is equal to the composition \(\Lambda \) with the quadratic form \(Nrd \) on \(\mathcal{O} \). Therefore we may reduce to the case where the CM false elliptic curves \(A_1 \) and \(A_2 \) have the same underlying false elliptic curve \(A \). There are isomorphisms of \(\mathbb{Z}_\ell \)-algebras \(L_\ell \cong \text{End}_{\mathcal{O}_A}(T_\ell(A)) \cong \mathcal{O}_{B,\ell} \), and this isomorphism identifies the quadratic form deg\(^*\) on \(L_\ell \) with the quadratic form \(Nrd \) on \(\mathcal{O}_{B,\ell} \). The rest of the proof is very similar to that of [10, Lemma 2.11], replacing \(\text{Lie}(E) \) and \(\Delta \) there with \(A[\mathfrak{m}_\ell] \) and \(\mathcal{O}_{B,\ell} \), and using the fact that if
\[
\kappa_{ij}^{m_i} : \mathcal{O}_{K_j} \rightarrow \text{End}_{\mathcal{O}_B/m_B}(A[m_i]) \cong \mathcal{O}_B/m_\ell
\]
is the action on the \(m_\ell \)-torsion, then the map \(\mathcal{O}_K \rightarrow \mathbb{F}_{\ell^2} \) defined by \(t_1 \otimes t_2 \mapsto \kappa_{ij}^{m_i}(t_1)\kappa_{ij}^{m_i}(t_2) \) is equal to the composition
\[
\mathcal{O}_K \xrightarrow{\phi} \mathcal{O}_B/m_B \rightarrow \mathcal{O}_B/m_\ell,
\]
by definition of \((A_1, A_2) \) being in \(\mathcal{B}_\ell^B(\mathbb{F}_\ell) \). \(\square \)

5.2. The case of \(\ell = p \). In order to prove a similar result for \(\ell = p \) we need a few preliminary results.

Lemma 5.3. If \(A \in \mathcal{B}^B(\mathbb{F}_p) \) with \(p \mid d_B \), then \(\text{End}_{\mathcal{O}_B}(\text{Lie}(A)) \cong \mathbb{F}_p \) as \(\mathbb{F}_p \)-algebras.

Proof. This is an easy computation in coordinates using Proposition 3.16 and the isomorphisms \(\text{Lie}(A) \cong \text{Lie}(D(A)) \cong D(\mathcal{O}_B) \). \(\square \)

Proposition 5.4. Suppose \((A, i) \in \mathcal{B}^B(\mathbb{F}_p) \) with \(p \mid d_B \). Under the isomorphism
\[
\text{End}_{\mathcal{O}_B}(A) \otimes \mathbb{Z}_p \rightarrow R_{11}
\]
in Proposition 3.15, the \(\mathbb{Z}_p \)-quadratic form deg\(^*\) on \(\text{End}_{\mathcal{O}_B}(A) \otimes \mathbb{Z}_p \) is identified with the \(\mathbb{Z}_p \)-quadratic form \(Q \) on \(R_{11} \) given by
\[
Q \left[\begin{array}{cc} x & y \\ p_y y & x \end{array} \right] = x^2 - p^2 y^2.
\]

Proof. Recall that \(f^\ell = \lambda^{-1} \circ f^\ell \circ \lambda \), where \(\lambda : A \rightarrow A' \) is the unique principal polarization satisfying \(\lambda^{-1} \circ i(x)^\ell \circ \lambda = i(x) \ell \) for all \(x \in \mathcal{O}_B \). The polarization \(\lambda \) then induces a map \(\Lambda = D(\lambda) : D(A) \rightarrow D(A^\ell) \cong D(A)^\ell \), which determines a nondegenerate, alternating, bilinear pairing \((\cdot, \cdot) : D(A) \times D(A) \rightarrow W \) satisfying \((\mathcal{F} x, y) = \sigma((x, y)) \) for all \(x, y \in D(A) \).

Let \(\{e_n\} \) be a \(W \)-basis for \(D(A) \) as in Proposition 3.16. First suppose \(D(i) = f_1 \), in the notation of (3.4). A computation shows \(\Lambda \) must be of the form
\[
\Lambda = \begin{bmatrix} 0 & 0 & 0 & b \\ 0 & 0 & b & 0 \\ -b & 0 & 0 & 0 \end{bmatrix}
\]
for some \(b \in \mathbb{Z}_p^\times \).

The involution \(\varphi \mapsto \varphi^T \) on \(\text{End}_W(D(A)) \cong M_4(W) \) corresponding to the Rosati involution \(f \mapsto \lambda^{-1} \circ f^\ell \circ \lambda \) on \(\text{End}^B(A) \) (which restricts to \(f \mapsto f^\ell \) on \(\text{End}_{\mathcal{O}_B}(A) \otimes \mathbb{Z}_p \)) is given by \(\varphi^T = \Lambda^{-1} \varphi^T \Lambda \), where \(\varphi^T \) is the transpose of the matrix \(\varphi \). If
\[
\varphi = \begin{bmatrix} x & y \\ p_y y & x \end{bmatrix} \in R_{11},
\]
then viewing it as an element of $M_4(W)$ as in (3.6), applying the involution \dagger, and then viewing it again in R_{11}, gives

$$\varphi_{\rho^1} = \begin{bmatrix} x\bar{x} - p^2 y\bar{y} & 0 \\ 0 & x\bar{x} - p^2 y\bar{y} \end{bmatrix},$$

so we obtain $Q(\varphi) = x\bar{x} - p^2 y\bar{y}$. A similar computation gives the same result if $D(i) = f_2$. □

For $j = 1, 2$ let $\theta_j : O_{K_j} \to O_B/\mathfrak{m}_B$ be a ring homomorphism and let $A_j \in \mathcal{B}_j^B(\theta_j)(\overline{F}_p)$ for $p \mid d_B$. There is a unique ring isomorphism $O_{K_1,p} \to O_{K_2,p}$ making the diagram

\[
\begin{array}{ccc}
O_{K_1,p} & \to & O_{K_2,p} \\
\theta_1 & \downarrow & \theta_2 \\
O_B/\mathfrak{m}_B & \to & O_B/\mathfrak{m}_B
\end{array}
\]

commute. We use this to identify the rings $O_{K_1,p}$ and $O_{K_2,p}$, and call this ring O_K.

Definition 5.5. With notation as above, if $D(A_1)$ and $D(A_2)$ are isomorphic as $\Delta \otimes \mathbb{Z}_p O_K$-modules, we say that A_1 and A_2 are of the same type.

Note that there are two isomorphism classes of $\Delta \otimes \mathbb{Z}_p O_K$-modules free of rank 4 over \mathbb{Z}_p, and A_1 and A_2 being of the same type just means $D(A_1)$ and $D(A_2)$ lie in the same isomorphism class, and not being of the same type means they lie in the two separate classes. This definition is a bit misleading because we will see below that A_1 and A_2 are of the same type if and only if \mathfrak{p} divides $\ker(\theta)$, where $\theta : O_K \to O_B/\mathfrak{m}_B$ is the map induced by θ_1 and θ_2, so this “type” is really a property between \mathfrak{p} and θ, independent of A_1 and A_2.

However, the above definition is the easier one to start with in proving the next few results.

Proposition 5.6. Suppose $(A_j, i_j) \in \mathcal{B}_j^B(\theta_j)(\overline{F}_p)$ for $j = 1, 2$, where $p \mid d_B$, and A_1 and A_2 are not of the same type. There are isomorphisms of \mathbb{Z}_p-modules

$$\text{Hom}_{O_B \otimes \mathfrak{p}}(D(A_1), D(A_2)) \cong \text{Hom}_{O_B \otimes \mathfrak{p}}(D(A_2), D(A_1)) \cong R_{12},$$

where

$$R_{12} = \left\{ \begin{bmatrix} px & y\Pi \\ y\Pi & x \end{bmatrix} : x, y \in \mathbb{Z}_p^2 \right\} \subset M_2(\Delta)$$

and we have fixed an embedding $\mathbb{Z}_p^2 \hookrightarrow \Delta$ so that $\Delta = \mathbb{Z}_p^2 \oplus \mathbb{Z}_p^2 \Pi$. Under the isomorphism

$$\text{Hom}_{O_B}(A_1, A_2) \otimes \mathbb{Z} \mathbb{Z}_p \xrightarrow{D} \text{Hom}_{O_B}(A_1, A_2) \cong R_{12},$$

the \mathbb{Z}_p-quadratic form \deg^* on $\text{Hom}_{O_B}(A_1, A_2) \otimes \mathbb{Z} \mathbb{Z}_p$ is identified with the \mathbb{Z}_p-quadratic form $u \cdot Q'$ on R_{12}, where $u \in \mathbb{Z}_p^\times$ and

$$Q' \begin{bmatrix} px \\ y\Pi \\ x \end{bmatrix} = p(x\bar{x} - y\bar{y}).$$

Under the isomorphism

$$\text{Hom}_{O_B}(A_2, A_1) \otimes \mathbb{Z} \mathbb{Z}_p \xrightarrow{D} \text{Hom}_{O_B}(D(A_2), D(A_1)) \cong R_{12},$$

the quadratic form \deg^* is identified with the quadratic form $u^{-1} \cdot Q'$.

Proof. The first claim follows from a computation in coordinates. Now let \(\lambda_j : A_i \to A_j^\vee \) be the unique principal polarization satisfying \(i_j(x) = \lambda_j^{-1} \circ i(x)^\vee \circ \lambda_j \) for all \(x \in O_B \). In the proof of Proposition 5.4 we showed

\[
\Lambda_j = D(\lambda_j) = \begin{bmatrix} 0 & 0 & 0 & \bar{b}_j \\ 0 & 0 & \bar{b}_j & 0 \\ 0 & -\bar{b}_j & 0 & 0 \\ -\bar{b}_j & 0 & 0 & 0 \end{bmatrix} \in \text{M}_4(W)
\]

for some \(b_j \in \mathbb{Z}_{p}^\times \) satisfying \(b_1^{-1}b_2 \in \mathbb{Z}_{p}^\times \). We have \(D(f^\dagger) = \Lambda^{-1}D(f)^\vee \Lambda \), where \(D(f)^\vee \in \text{Hom}_{O_B \otimes \mathbb{Z}\mathfrak{q}}(D(A_2)^\vee, D(A_2)^\vee) \) is the dual linear map. Therefore, through the map \(D \), the assignment \(f \mapsto f^\dagger \) corresponds to the assignment \(\varphi \mapsto \varphi^\dagger = \Lambda^{-1}\varphi^T \Lambda \). If

\[
\varphi = \begin{bmatrix} px & y\Pi \\ y\Pi & x \end{bmatrix} \in R_{12}
\]

then

\[
\varphi^\dagger \varphi = \begin{bmatrix} p(x\Xi - y\bar{\Pi})u & 0 \\ 0 & p(x\Xi - y\bar{\Pi})u \end{bmatrix},
\]

where \(u = b_1^{-1}b_2 \).

Recall that \((A_1, A_2) \in \mathcal{A}_B^\theta(D, \mathbb{Z}_p) \) and for \(p \mid d_B \) we are using \(\theta \) to identify \(O_{K_{1,p}} \) and \(O_{K_{2,p}} \) as in (5.1).

Proposition 5.7. There is a \(K_p \)-linear isomorphism of \(F_p \)-quadratic spaces

\[
(V_p(A_1, A_2), \text{deg}_{CM}) \cong (K_p, \beta_p \cdot N_{K_p/F_p})
\]

for some \(\beta_p \in F_p^\times \) satisfying

\[
\beta_p O_{F,p} = \begin{cases}
p\mathbb{O}_p^{-1} & \text{if } p \nmid d_B \\
p^2\mathbb{O}_p^{-1} & \text{if } p \mid d_B \text{ and } A_1, A_2 \text{ are of the same type} \\
p\mathfrak{T}\mathbb{O}_p^{-1} & \text{if } p \mid d_B \text{ and } A_1, A_2 \text{ are not of the same type},
\end{cases}
\]

where \(\mathbb{O}_p = \mathcal{O}_{F,p}, \mathfrak{p} = \mathcal{P} \cap O_F, \) and \(\mathfrak{p} \) is the other prime ideal of \(O_F \) lying over \(p \). This map takes \(L_p(A_1, A_2) \) isomorphically to \(O_{K,p} \).

Proof. First suppose \(p \nmid d_B \). We will write \(L_p \) for \(L_p(A_1, A_2) \). The proof of the existence of the isomorphism taking \(L_p \) to \(O_{K,p} \) is the same as for \(\ell \neq p \). We may reduce to the case where the CM false elliptic curves \(A_1 \) and \(A_2 \) have the same underlying false elliptic curve \(A \) because the idempotents \(\varepsilon, \bar{\varepsilon} \in M_2(W) \cong O_B \otimes \mathbb{Z} W \) provide a splitting \(D(A_j) \cong \varepsilon D(A_j) \oplus \bar{\varepsilon} D(A_j) \), which means \(D(A_1) \cong D(A_2) \) as \(O_B \otimes \mathbb{Z} \mathcal{P} \)-modules and thus

\[
L_p \cong \text{End}_{O_B \otimes \mathbb{Z}\mathcal{P}}(D(A)) \cong \Delta,
\]

where \(\Delta \) is the maximal order in the quaternion division algebra over \(\mathbb{Q}_p \). The rest of the proof is the same as [10, Lemma 2.11].

Next suppose \(p \mid d_B \), and first assume \(A_1 \) and \(A_2 \) are of the same type. As mentioned above we identify \(O_{K_{1,p}} \) and \(O_{K_{2,p}} \), and call this ring \(O_K \). In this case we may assume \(A_1 \) and \(A_2 \) have the same underlying false elliptic curve \(A \cong M \otimes_{O_K} E \) and \(\kappa_1 = \kappa_2 = \kappa \). If we fix the embedding \(O_K \cong \mathbb{Z}_{p^2} \hookrightarrow \Delta \cong \text{End}_{\mathcal{P}}(D(E)) \), then there is an isomorphism \(L_p = \text{End}_{O_B}(A) \otimes \mathbb{Z}_{p^2} \cong R_{11} \) with \(\kappa : O_K \to R_{11} \) given by \(\kappa(x) = \text{diag}(x, x) \), and
the quadratic form \(\text{deg}^* \) on \(L_p \) is identified with the quadratic form \(Q \) on \(R_{11} \) defined in Proposition 5.4. The dual lattice of \(R_{11} \) relative to \(Q \) is

\[
R_{11}' = \left\{ \begin{bmatrix} x & y \\ p^{-1}y & x \end{bmatrix} : x, y \in \mathbb{Z}_{p^2} \right\},
\]

so \([R_{11}': R_{11}] = p^4\). As before, we obtain \([\mathcal{O}_{K,p} : \beta_p \mathcal{O}_{K,p}] = p^4\).

Under the isomorphism \(L_p \cong R_{11} \) there is an action \(R_{11} \to \text{End}_\Delta(\text{Lie}(A)) \cong \mathbb{F}_p \), and any element of

\[
\mathfrak{M} = \left\{ \begin{bmatrix} px & y\Pi \\ py\Pi & px \end{bmatrix} : x, y \in \mathbb{Z}_{p^2} \right\} \subset R_{11},
\]

a maximal ideal of \(R_{11} \), acts trivially on \(D(A)/\mathfrak{Y}D(A) \cong \text{Lie}(A) \), so \(\mathfrak{M} = \ker(R_{11} \to \mathbb{F}_p) \). Hence, \(R_{11} \to \text{End}_\Delta(\text{Lie}(A)) \) determines an isomorphism \(\gamma : R_{11}/\mathfrak{M} \to \mathbb{F}_p \), which allows us to identify \(\kappa_{\text{Lie}} : \mathcal{O}_K \to \text{End}_\Delta(\text{Lie}(A)) \) with the composition

\[
\mathcal{O}_K \xrightarrow{\sim} R_{11} \to R_{11}/\mathfrak{M} \xrightarrow{\sim} \mathbb{F}_p.
\]

However, the map \(\mathcal{O}_K \to \mathbb{F}_p \) defined by \(t_1 \otimes t_2 \to \kappa_{\text{Lie}}(t_1)\kappa_{\text{Lie}}(t_2) \) is the structure map \(\mathcal{O}_K \to \mathbb{F}_p \hookrightarrow \mathbb{F}_p \) by the CM normalization condition, so its kernel is \(\mathfrak{P} \). It follows from the factorization of \(\kappa_{\text{Lie}} \) above that an element of \(\mathcal{O}_{K,p} \) acts trivially on \(R_{11}'/R_{11} \) if and only if it is in \(\mathfrak{P}^2 \). Hence there is an \(\mathcal{O}_{K,p} \)-linear map \(\mathcal{O}_{K,p}/\mathfrak{P}^2 \mathcal{O}_{K,p} \to R_{11}'/R_{11} \) given by \(x \mapsto x \bullet 1 \).

But \(\mathfrak{P}^2 \) has norm \(p^4 \). For \(R_{11}' : R_{11} \), so there are isomorphisms of \(\mathcal{O}_{K,p} \)-modules

\[
\mathcal{O}_{K,p}/\mathfrak{P}^2 \mathcal{O}_{K,p} \cong R_{11}'/R_{11} \cong \beta_p^{-1} \mathcal{D}^{-1} \mathcal{O}_{K,p}/\mathcal{O}_{K,p}.
\]

It follows that \(\beta_p \mathcal{D} \mathcal{O}_{K,p} = \mathfrak{P}^2 \mathcal{O}_{K,p} \) and thus \(\beta_p \mathcal{O}_{F,p} = \mathfrak{P}^2 \mathcal{D}_p^{-1} \).

Next assume \(A_1 \) and \(A_2 \) are not of the same type, with \(A_j \cong M_j \otimes_{\mathcal{O}_K} E_j \). As before we identify \(\mathcal{O}_{K_1,p} \) with \(\mathcal{O}_{K_2,p} \) and call this ring \(\mathcal{O}_K \). Let \(\mathfrak{g} \) be the connected \(p \)-divisible group of height 2 and dimension 1 over \(\mathbb{F}_p \). Isomorphisms \(E_j[p^\infty] \cong \mathfrak{g} \) may be chosen in such a way that the CM actions \(g_1 : \mathcal{O}_K \to \text{End}(E_1[p^\infty]) \cong \Delta \) and \(g_2 : \mathcal{O}_K \to \text{End}(E_2[p^\infty]) \cong \Delta \) have the same image in \(\Delta \). Fix an embedding \(\mathbb{Z}_p \hookrightarrow \Delta \) and a uniformizer \(\Pi \in \Delta \) satisfying \(\Pi g_1(x) = g_1(x) \Pi \) for all \(x \in \mathcal{O}_K \). By Proposition 5.6 there are isomorphisms of \(\mathbb{Z}_p \)-modules

\[
L_\nu \cong \text{Hom}_{\mathcal{O}_p \otimes_{\mathcal{O}_K} D(A_1), D(A_2)} \cong R_{12},
\]

and the quadratic form \(\text{deg}^* \) on \(L_p \) is identified with the quadratic form \(uQ' \) on \(R_{12} \) defined in Proposition 5.6. The dual lattice of \(R_{12} \) relative to \(uQ' \) is

\[
R_{12}' = \kappa^{-1} \left\{ \begin{bmatrix} x & y \Pi \\ p^{-1}y \Pi & x \end{bmatrix} : x, y \in \mathbb{Z}_{p^2} \right\},
\]

so \([R_{12}' : R_{12}] = p^4\). As before this gives \([\mathcal{O}_{K,p} : \beta_p \mathcal{D} \mathcal{O}_{K,p}] = p^4\). Fixing ring isomorphisms

\[
\text{End}_{\mathcal{O}_p}(A_1) \otimes_{\mathbb{Z}} \mathbb{Z}_p \cong R_{11} \cong \text{End}_{\mathcal{O}_p}(A_2) \otimes_{\mathbb{Z}} \mathbb{Z}_p,
\]

it makes sense to take the product \(\kappa_2(t_2)\kappa_1(t_1) \) in \(R_{11} \) for \(t_1, t_2 \in \mathcal{O}_K \). As in the case of \(A_1 \) and \(A_2 \) having the same type, we have \(t_1 \otimes t_2 \in \mathfrak{P} \) if and only if \(\kappa_2(t_2)\kappa_1(t_1) \in \mathfrak{M} \).

Let \(\mathfrak{P} \) be the other prime ideal of \(\mathcal{O}_K \) lying over \(p \). For \(t_1 \otimes t_2 \in \mathcal{O}_K \),

\[
(t_1 \otimes t_2) \bullet \varphi \in R_{12} \text{ for all } \varphi \in R_{12}' \iff g_2(t_2)g_1(t_1) \in p\mathbb{Z}_p \text{ and } g_2(t_2)g_1(t_1) \in p\mathbb{Z}_p \iff \kappa_2(t_2)\kappa_1(t_1) \in \mathfrak{M} \text{ and } \kappa_2(t_2)\kappa_1(t_1) \in \mathfrak{M} \iff t_1 \otimes t_2 \in \mathfrak{P} \cap \mathfrak{M} = \mathfrak{P}\mathfrak{M}.
\]
This shows an element of $\mathcal{O}_{K,p}$ acts trivially on R_{12}'/R_{12} if and only if it is in $\mathfrak{P}\mathfrak{F}$. Since $[R_{12}':R_{12}] = p^2$ is the norm of $\mathfrak{P}\mathfrak{F}$, similar to above we obtain $\beta_p\mathcal{O}_{F,p} = \mathfrak{P}\mathfrak{D}^{-1}_p$. □

If $A \in \mathcal{Y}^B(\mathbb{F}_p)$ for $p \mid d_B$, the m_p-torsion $A[m_p]$ is defined just as $A[m]$.

Lemma 5.8. Suppose $A \in \mathcal{Y}^B(\mathbb{F}_p)$ with $p \mid d_B$. There is an isomorphism of \mathcal{O}_B/m_p-algebras $\text{End}_{\mathcal{O}_B/m_p}(A[m_p]) \cong \mathcal{O}_B/m_p$.

Proof. This is a computation using Dieudonné modules and Proposition 3.16. □

Corollary 5.9. Suppose $A \in \mathcal{Y}^B(k)$ for $k = \mathbb{C}$ or $k = \mathbb{F}_p$. There is an isomorphism of \mathcal{O}_B/m_B-algebras $\text{End}_{\mathcal{O}_B/m_B}(A[m_B]) \cong \mathcal{O}_B/m_B$.

Proof. Combine Lemmas 5.1 and 5.8. □

Proposition 5.10. Let $(A_1, A_2) \in \mathcal{Y}^B(\mathcal{P}\mathfrak{F})$ with \mathcal{P} lying over $p \mid d_B$. Then \mathcal{P} divides $\ker(\theta)$ if and only if A_1 and A_2 are of the same type.

Proof. Suppose A_1 and A_2 are of the same type. Following the proof of Proposition 5.7 starting around (5.2), replacing $\text{Lie}(A)$ with $A[m_p]$ and using Lemma 5.8, we find that an element of $\mathcal{O}_{K,p}$ acts trivially on L'/L_p if and only if it is in \mathfrak{Q}^2, where $\mathfrak{Q} \subset \mathcal{O}_K$ is the prime over p dividing $\ker(\theta)$. However, the same is true for \mathcal{P} in place of \mathfrak{Q}, so $\mathfrak{Q} = \mathfrak{Q}$.

Now suppose A_1 and A_2 are not of the same type. Define a ring homomorphism $\eta : \mathcal{O}_K \rightarrow \mathcal{O}_B/m_B$ according to $\eta_j^{m_p} : \mathcal{O}_{K_j} \rightarrow \mathcal{O}_B/m_p$ being defined by $\eta_j^{m_p} = \theta_j^{m_p}$ for all $\ell \neq p$ and $j = 1, 2$, $\eta_1^{m_p} = \theta_1^{m_p}$, and $\eta_2^{m_p}(x) = \theta_2^{m_p}(x)$. Consider the CM pair (A_1, A_2'), where $A_2' = w_p \cdot A_2$ and w_p is the Atkin-Lehner operator at p. The map

$$(\kappa_2'')^{m_p} : \mathcal{O}_{K_2} \rightarrow \text{End}_{\mathcal{O}_B/m_p}(A_2'[m_p]) \cong \mathcal{O}_B/m_p$$

is given by $(\kappa_2'')^{m_p}(x) = \kappa_2^{m_p}(x)$. The resulting map $\mathcal{O}_K \rightarrow \mathcal{O}_B/m_p$ for the pair (A_1, A_2') is given by $t_1 \otimes t_2 \mapsto \kappa_1^{m_p}(t_1) \kappa_2^{m_p}(t_2)$, so $(A_1, A_2') \in \mathcal{Y}^B(\mathcal{P}\mathfrak{F})$ and the kernel of this map is \mathfrak{Q}, where \mathfrak{Q} is the prime over p dividing $\ker(\theta)$. As A_1 and $w_p \cdot A_2$ are of the same type, $\mathfrak{Q} = \mathfrak{Q}$ by the first part of the proof applied to (A_1, A_2'), so \mathfrak{Q} does not divide $\ker(\theta)$. □

5.3. Cases combined. Let $(A_1, A_2) \in \mathcal{Y}^B(\mathcal{P}\mathfrak{F})$ with \mathcal{P} lying over some prime p, and let $p = \mathfrak{P} \cap \mathcal{O}_F$. Set $a_\theta = \ker(\theta) \cap \mathcal{O}_F$.

Theorem 5.11. For any finite idele $\beta \in \hat{F}^\times$ satisfying $\beta \hat{\mathcal{O}}_F = a_\theta \mathfrak{D}^{-1} \hat{\mathcal{O}}_F$, there is a \hat{K}-linear isomorphism of \hat{F}-quadratic spaces

$$(\hat{V}(A_1, A_2), \text{deg}_{\text{CM}}) \cong (\hat{K}, \beta \cdot N_{K/F})$$

taking $\hat{L}(A_1, A_2)$ isomorphically to $\hat{\mathcal{O}}_K$.

Proof. Combining Propositions 5.2 and 5.7, and Proposition 5.10 proves the claim for some $\beta \in \hat{F}^\times$ satisfying $\beta \hat{\mathcal{O}}_F = a_\theta \mathfrak{D}^{-1} \hat{\mathcal{O}}_F$, and the surjectivity of the norm map $\hat{\mathcal{O}}_K^\times \rightarrow \hat{\mathcal{O}}_F^\times$ gives the result for all such β. □

Recall the definitions of the functions ρ and ρ_e from the introduction.

Definition 5.12. For each prime number ℓ and $\alpha \in F_{\ell}^\times$ define the orbital integral at ℓ by

$$O_\ell(\alpha, A_1, A_2) = \begin{cases}
\rho_\ell(\alpha \mathfrak{D}_\ell) & \text{if } \ell \neq p, \ell \nmid d_B \\
\rho_\ell(\alpha \mathfrak{D}_\ell^{-1} \mathfrak{D}_\ell) & \text{if } \ell \neq p, \ell \mid d_B \\
\rho_p(\alpha^{-1}(p) \mathfrak{D}_p) & \text{if } \ell = p,
\end{cases}$$
where \((\ell) \) is the prime over \(\ell \) dividing \(a_\theta \), with the convention that \(l(p) = \mathcal{O}_F \) if \(p \nmid d_B \).

It is possible to give a definition of \(\mathcal{O}_\ell(\alpha, A_1, A_2) \) as a sum of characteristic functions, analogous to \([10, (2.11)]\), but we do not need the details of that here. This alternative definition agrees with the one given above by a proof identical to that of \([10, \text{Lemmas 2.19, 2.20}]\), using Propositions 5.2 and 5.7 in place of Lemmas 2.10 and 2.11 of \([10]\).

Theorem 5.13. Let \(p \) be a prime number that is nonsplit in \(K_1 \) and \(K_2 \) and suppose \((A_1, A_2)\) is a CM pair over \(\mathbb{F}_p \). For any \(\alpha \in F^\times \) totally positive,

\[
\sum_{(a_1, a_2) \in \Gamma} \# \{ f \in L(a_1 \otimes \mathcal{O}_{K_1}, A_1, a_2 \otimes \mathcal{O}_{K_2}, A_2) : \deg_{\text{CM}}(f) = \alpha \} = \frac{w_1 w_2}{2} \prod_\ell \mathcal{O}_\ell(\alpha, A_1, A_2).
\]

Proof. The proof is formally the same as \([10, \text{Proposition 2.18}]\), replacing the definitions there with our analogous definitions, and using the above comment to match up the different definitions of the orbital integral. \(\square \)

Proposition 5.14. For any \(\alpha \in F^\times \) we have

\[
\prod_\ell \mathcal{O}_\ell(\alpha, A_1, A_2) = \rho(\alpha a_\theta^{-1} p^{-1} \mathfrak{D}).
\]

Proof. This follows from the definition of \(\mathcal{O}_\ell(\alpha, A_1, A_2) \) and the product expansion for \(\rho \). \(\square \)

6. Deformation theory

This section is devoted to the calculation of the length of the local ring \(\mathcal{O}^{\text{sh}}_{\mathcal{X}_g,B}(\mathbb{F}_p) \), which relies on the deformation theory of objects \((A_1, A_2, f)\) of \(\mathcal{X}^B_{g,B}(\mathbb{F}_p) \). We continue with the notation of Section 3.3. Fix a prime ideal \(\mathfrak{P} \subset \mathcal{O}_K \) of residue characteristic \(p \) and set \(\mathcal{W} = \mathcal{W}_{\mathfrak{P},p} \) and \(\mathcal{CLN} = \mathcal{CLN}_{\mathfrak{P},p} \). Let \(g \) be the connected \(p \)-divisible group of height 2 and dimension 1 over \(\mathbb{F}_p \).

Definition 6.1. Let \((A_1, A_2)\) be a CM pair over \(\mathbb{F}_p \) and \(R \in \mathcal{CLN} \). A deformation of \((A_1, A_2)\) to \(R \) is a CM pair \((\tilde{A}_1, \tilde{A}_2)\) over \(R \) together with an isomorphism of CM pairs \((\tilde{A}_1, \tilde{A}_2)/\mathfrak{P}_p \cong (A_1, A_2)\).

Given a CM pair \((A_1, A_2)\) over \(\mathbb{F}_p \), define \(\text{Def}(A_1, A_2) \) to be the functor \(\mathcal{CLN} \to \text{Sets} \) that assigns to each \(R \in \mathcal{CLN} \) the set of isomorphism classes of deformations of \((A_1, A_2)\) to \(R \). By Proposition 3.6,

\[
\text{Def}(A_1, A_2) \cong \text{Def}_{B}(A_1, \mathcal{O}_{K_1}) \times \text{Def}_{B}(A_2, \mathcal{O}_{K_2})
\]

is represented by \(\mathcal{W} \circ_{\mathcal{W}} \mathcal{W} \cong \mathcal{W} \). Given a nonzero \(f \in L(A_1, A_2) \) define \(\text{Def}(A_1, A_2, f) \) to be the functor \(\mathcal{CLN} \to \text{Sets} \) that assigns to each \(R \in \mathcal{CLN} \) the set of isomorphism classes of deformations of \((A_1, A_2, f)\) to \(R \).

6.1. Deformations of CM pairs

Fix a ring homomorphism \(\theta : \mathcal{O}_K \to \mathcal{O}_B/\mathfrak{m}_\theta \), a CM pair \((A_1, A_2) \in \mathcal{X}^B_{g,B}(\mathbb{F}_p) \), and a nonzero \(f \in L(A_1, A_2) \). Assume \(p \) is nonsplit in \(K_1 \) and \(K_2 \).
Proposition 6.2. Suppose \(p \nmid d_B \).
(a) If \(p \) is inert in \(K_1 \) and \(K_2 \), then the functor \(\text{Def}(A_1, A_2, f) \) is represented by a local Artinian \(\mathcal{W} \)-algebra of length
\[
\frac{\text{ord}_p(\text{deg}_{CM}(f)) + 1}{2}.
\]
(b) If \(p \) is ramified in \(K_1 \) or \(K_2 \), then \(\text{Def}(A_1, A_2, f) \) is represented by a local Artinian \(\mathcal{W} \)-algebra of length
\[
\frac{\text{ord}_p(\text{deg}_{CM}(f)) + \text{ord}_p(\mathcal{O}) + 1}{2}.
\]

Proof. The proofs of (a) and (b) are the same as [10, Lemmas 2.23, 2.24], respectively. □

We will need an analogue for false elliptic curves of a result of Gross ([6, Proposition 3.3]) that gives the structure of the endomorphism ring of the modulo \(m \) reduction of the universal deformation of the \(p \)-divisible group \(\mathfrak{g} \). This is what we prove next.

Lemma 6.3. Take \(k = K_j \) for \(j \in \{1, 2\} \) and \(L = K \). Let \((A, i, \kappa) \in \mathcal{W}(\mathbb{F}_p) \) for \(p \mid d_B \).
Set
\[
R = \text{End}_{\mathcal{O}_B}(A) \otimes_{\mathbb{Z}} \mathbb{Z}_p \cong \text{End}_{\mathcal{O}_B}(A[p^{\infty}]),
\]
let \(\mathcal{A} \) be the universal deformation of \(A \) to \(\mathcal{W} = W \), and for each integer \(m \geq 1 \) set
\[
R_m = \text{End}_{\mathcal{O}_B \otimes_{\mathcal{W}} W_m}(\mathcal{A} \otimes_{\mathcal{W}} W_m) \otimes_{\mathbb{Z}} \mathbb{Z}_p \cong \text{End}_{\mathcal{O}_B \otimes_{\mathcal{W}} W_m}(\mathcal{A}[p^{\infty}] \otimes_{\mathcal{W}} W_m),
\]
where \(W_m = W/(p^m) \). Then the reduction map \(R_m \to R \) induces an isomorphism
\[
R_m \cong \mathcal{O}_K + p^{m-1}R,
\]
where \(\mathcal{O}_K = \kappa(\mathcal{O}_{k,p}) \).

Proof. We will use Grothendieck-Messing deformation theory. Let \(D = D(A) \) be the co-
variant
Dieudonné module of \(A \) as above and set \(\mathcal{O} = \mathcal{O}_B \otimes_{\mathcal{W}} \mathcal{O}_K \). For any \(m \geq 1 \) there are \(\mathcal{O} \)-linear isomorphisms of \(W_m \)-modules
\[
H^1_{dR}(\mathcal{A} \otimes_{\mathcal{W}} W_m) \cong D \otimes_{\mathcal{W}} W_m \cong D/p^m D.
\]

For any \(m \geq 1 \) the surjection \(W_m \to \mathbb{F}_p \) has kernel \(pW/p^mW \), which has the canonical divided power structure. By Proposition 3.6, \((A, i, \kappa) \) has a unique deformation to \(W_m \), namely \(\mathcal{A}_m = \mathcal{A} \otimes_{\mathcal{W}} W_m \). Therefore there is a unique direct summand \(M_m \subset H^1_{dR}(A) \), where \(H^1_{dR}(A) = H^1_{dR}(\tilde{A}) \) for any deformation \(\tilde{A} \) of \(A \) to \(W_m \), stable under the action of \(\mathcal{O} \) on \(H^1_{dR}(A) \), that reduces to \(\text{Fil}(A) \) (the Hodge filtration of \(A \)), and such that the diagram
\[
\begin{array}{ccc}
\mathcal{O}_k & \xrightarrow{\text{End}_{\mathcal{O}_B \otimes_{\mathcal{W}} W_m}(\tilde{H}^1_{dR}(A)/M_m)} & \text{End}_{\mathcal{O}_B \otimes_{\mathcal{W}} W_m}(\tilde{H}^1_{dR}(A)/M_m) \\
W_m & \downarrow & \\
& &
\end{array}
\]
commutes, namely \(M_m = \text{Fil}(\mathcal{A}_m) \). The Hodge sequence for \(A \) takes the form
\[
0 \to \text{Fil}(A) \to D/pD \to \text{Lie}(A) \to 0.
\]

Using a \(W \)-basis \(\{e_1, e_2, e_3, e_4\} \) for \(D \) as in Proposition 3.16, it also defines an \(\mathbb{F}_p \)-basis for \(D/pD \), and \(\text{Fil}(A) = \ker(D/pD \to D/\mathcal{W}D) \) has \(\{e_2, e_4\} \) as an \(\mathbb{F}_p \)-basis.
Any $f \in R$ induces a map $H_1^{dR}(A) \to H_1^{dR}(A)$ which lifts to a map $\tilde{f} : \tilde{H}_1^{dR}(A) \to H_1^{dR}(A)$, and f lifts to an element of R_m if and only if $\tilde{f}(M_m) \subset M_m$. The map

$$\tilde{f} : \tilde{H}_1^{dR}(A) \cong D/p^m D \to D/p^m D \cong \tilde{H}_1^{dR}(A)$$

corresponds to the reduction modulo p^m of $f : D \to D$. We have $M_m \cong N = \text{Span}_{W_m}(e_2, e_4)$ under the isomorphism $\tilde{H}_1^{dR}(A) \cong D/p^m D$. Expressing

$$f = \begin{bmatrix} x \\ py \Pi \\ y \Pi \end{bmatrix} \in R$$
as an element of $M_4(W)$ as in (3.6), we have

$$f \text{ lifts to an element of } R_m \iff \tilde{f}(N) \subset N$$

$$\iff f(e_2), f(e_4) \in W e_2 + W e_4 + p^m D$$

$$\iff y \in p^{m-1}O_{K,p}$$

$$\iff f \in O_K + p^{m-1}R.$$

Proposition 6.4. If $p \mid d_B$ and \mathfrak{P} divides $\ker(\theta)$, then $\text{Def}(A_1, A_2, f)$ is represented by a local Artinian \mathfrak{W}-algebra of length $\frac{1}{2} \text{ord}_p(\text{deg}_{CM}(f))$.

Proof. As usual $A_j \cong M_j \otimes_{O_{K_j}} E_j$ for some supersingular elliptic curve E_j. Isomorphisms $E_j[p^\infty] \cong \mathfrak{P}$ may be chosen so that the CM actions $O_{K_1,p} \to \Delta$ and $O_{K_2,p} \to \Delta$ on E_1 and E_2 have the same image $O_K \cong \mathbb{Z}_p$. Fix a uniformizer $\Pi \in \Delta$ satisfying $x \Pi = \Pi x$ for all $x \in O_K \subset \Delta$. There is an isomorphism of \mathbb{Z}_p-modules $L_p(A_1, A_2) \cong R$, where

$$R = \left\{ \begin{bmatrix} x \\ py \Pi \\ y \Pi \\ x \end{bmatrix} : x, y \in O_K \right\},$$

and the CM actions κ_1 and κ_2 are identified with a single action $O_K \to R$ given by $x \mapsto \text{diag}(x, x)$. Under the isomorphism $L_p(A_1, A_2) \cong R$ the quadratic form deg^* on $L_p(A_1, A_2)$ is identified with the quadratic form Q on R defined in Proposition 5.4. There is a decomposition of left O_K-modules $R = R_+ \oplus R_-$, with $R_+ = O_K$, embedded diagonally in R, and $R_- = O_K \Pi$, where

$$P = \begin{bmatrix} 0 & \Pi \\ \Pi & 0 \end{bmatrix}.$$

and this decomposition is orthogonal with respect to the quadratic form deg^*. Define $\varphi_\pm : O_{K,p} \to O_K \subset R$ by

$$\varphi_+(x_1 \otimes x_2) = \kappa_2(x_2)\kappa_1(\mathfrak{P}_1)$$

$$\varphi_-(x_1 \otimes x_2) = \kappa_2(x_2)\kappa_1(x_1),$$

and let Φ be the isomorphism $\varphi_+ \times \varphi_- : O_{K,p} \to O_K \times O_K$. Then the usual action of O_K on R is given by

$$x \bullet f = \varphi_+(x)f_+ + \varphi_-(x)f_-$$

for $f = f_+ + f_- \in R$. It follows that $\Phi(\text{deg}_{CM}(f)) = (\text{deg}^*(f_+), \text{deg}^*(f_-))$ and thus

$$\text{ord}_{p_+}(\text{deg}_{CM}(f)) = \text{ord}_p(\text{deg}^*(f_+))$$

$$\text{ord}_{p_-}(\text{deg}_{CM}(f)) = \text{ord}_p(\text{deg}^*(f_-)).$$
where \(p_\pm = p \) and \(p_\pm = \overline{p} \) (see the proof of Proposition 5.7). Since \(\deg^+(P) = Q(P) = -p^2 \), for any integer \(m \geq 1 \) and any \(f \in R \) we have

\[
f \in \mathcal{O}_K + p^{m-1}R \iff f_- \in p^{m-1}\mathcal{O}_K P \\
\iff \ord_p(\deg^+(f_-)) \geq 2m \\
\iff \frac{1}{2}\ord_p(\deg_{CM}(f)) \geq m.
\]

The functor

\[
\text{Def}(\mathbf{A}_1, \mathbf{A}_2) \cong \text{Def}_{\mathcal{O}_B}(A_1[p^\infty], \mathcal{O}_K) \times \text{Def}_{\mathcal{O}_B}(A_2[p^\infty], \mathcal{O}_K)
\]

is represented by \(\mathcal{W} \circledast \mathcal{W} \cong \mathcal{W} \). Let \((\widetilde{A}_1, \widetilde{A}_2)\) be the universal deformation of \((\mathbf{A}_1, \mathbf{A}_2)\) to \(\mathcal{W} = W \). It follows from [15, Proposition 2.9] that the functor \(\text{Def}(\mathbf{A}_1, \mathbf{A}_2, f) \) is represented by

\[
\text{Hom}_{\mathcal{O}_B \otimes \mathcal{O}_W}(\widetilde{A}_1[p^\infty] \otimes_W W_m, \widetilde{A}_2[p^\infty] \otimes_W W_m).
\]

Since there are \(\mathcal{O}_B \otimes \mathcal{O}_K \)-linear isomorphisms \(A_1[p^\infty] \cong A_2[p^\infty] \) and \(\widetilde{A}_j \otimes_W \mathbb{F}_p \cong A_j \), there is an \(\mathcal{O}_B \otimes \mathcal{O}_K \)-linear isomorphism \(A_1[p^\infty] \cong A_2[p^\infty] \) by the uniqueness of the universal deformation. Hence

\[
\text{Hom}_{\mathcal{O}_B \otimes \mathcal{O}_W}(\widetilde{A}_1[p^\infty] \otimes_W W_m, \widetilde{A}_2[p^\infty] \otimes_W W_m) \cong R_m \cong \mathcal{O}_K + p^{m-1}R
\]
in the notation of Lemma 6.3, and then \(m = \frac{1}{2}\ord_p(\deg_{CM}(f)) \) by the above calculation. \(\square \)

With \((\mathbf{A}_1, \mathbf{A}_2)\) as above, suppose \(p \mid d_B \) and \(\mathfrak{P} \) does not divide \(\ker(\theta) \). As usual \(\mathfrak{A}_j \cong M_j \otimes_{\mathcal{O}_K} E_j \) for some supersingular \(E_j \). Choose isomorphisms \(E_j[p^\infty] \cong \mathfrak{g} \) so that the CM actions \(g_1 : \mathcal{O}_{K_1, p} \to \Delta \) and \(g_2 : \mathcal{O}_{K_2, p} \to \Delta \) on \(E_1 \) and \(E_2 \) have the same image \(\mathcal{O}_K \cong \mathbb{Z}_p^2 \). Fix a uniformizer \(\Pi \in \Delta \) satisfying \(\Pi g_1(x) = g_1(\overline{x})\Pi \) for all \(x \in \mathcal{O}_{K_1, p} \).

There is an isomorphism of \(\mathbb{Z}_p \)-modules \(L_p(\mathbf{A}_1, \mathbf{A}_2) \cong R' \), where

\[
R' = \left\{ \begin{bmatrix} px \\ y \Pi \\ x \end{bmatrix} : x, y \in \mathcal{O}_K \right\},
\]

and the quadratic form \(\deg^+ \) on \(L_p(\mathbf{A}_1, \mathbf{A}_2) \) is identified with the quadratic form \(uQ' \) on \(R' \) defined in Proposition 5.6. There is a decomposition of left \(\mathcal{O}_K \)-modules \(R' = R'_+ \oplus R'_- \), where \(R'_+ = \mathcal{O}_K P_1 \) and \(R'_- = \mathcal{O}_K P_2 \), with

\[
P_1 = \begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix}, \quad P_2 = \begin{bmatrix} 0 & \Pi \\ \Pi & 0 \end{bmatrix}.
\]

Lemma 6.5. With notation as above, let \(\mathfrak{A}_j \) be the universal deformation of \(\mathbf{A}_j \) to \(\mathcal{W} = W \), and for each integer \(m \geq 1 \) set

\[
R'_m = \text{Hom}_{\mathcal{O}_B \otimes \mathcal{O}_W}(\mathfrak{A}_1 \otimes_W W_m, \mathfrak{A}_2 \otimes_W W_m) \otimes_{\mathbb{Z}} \mathbb{Z}_p.
\]

Then the reduction map \(R'_m \twoheadrightarrow R' \) induces an isomorphism

\[
R'_m \cong \mathcal{O}_K P_1 + p^{m-1}\mathcal{O}_K P_2.
\]

Proof. This is very similar to the proof of Lemma 6.3. \(\square \)
Proposition 6.6. If \(p \mid d_B \) and \(\mathfrak{P} \) does not divide \(\ker(\theta) \), then \(\text{Def}(A_1, A_2, f) \) is represented by a local Artinian \(\mathcal{W} \)-algebra of length
\[
\frac{\text{ord}_p(\deg_{CM}(f)) + 1}{2}.
\]

Proof. The proof is the same as in Proposition 6.4, using Lemma 6.5, the key difference being \(\deg^* (P_2) = uQ'(P_2) = -up \).

6.2. The étale local ring. Let \(\mathcal{Z} \) be a stack over \(\text{Spec}(O_K) \) and let \(z \in \mathcal{Z}(\mathbb{F}_P) \) be a geometric point. An étale neighborhood of \(z \) is a commutative diagram in the 2-category of stacks over \(\text{Spec}(O_K) \)
\[
\begin{array}{ccc}
\mathcal{Z} & \xrightarrow{\theta} & \mathcal{Z} \\
\downarrow & & \downarrow \\
\text{Spec}(\mathbb{F}_P) & \xrightarrow{\pi} & \mathcal{Z} \\
\end{array}
\]
where \(U \) is an \(O_K \)-scheme and \(U \to Z \) is an étale morphism. The strictly Henselian local ring of \(\mathcal{Z} \) at \(z \) is the direct limit
\[
O_{\mathcal{Z}, z} = \lim_{\leftarrow} (U, \pi(z))
\]
over all étale neighborhoods of \(z \), where \(O_{U, \pi(z)} \) is the local ring of the scheme \(U \) at the image of \(\pi(z) \). The ring \(O_{\mathcal{Z}, z} \) is a strictly Henselian local ring with residue field \(\mathbb{F}_P \) and the completion \(\hat{O}_{\mathcal{Z}, z} \) is a \(\mathcal{W} \)-algebra.

Theorem 6.7. Let \(\alpha \in F^\times \), let \(\theta : O_K \to O_B / m_B \) be a ring homomorphism, and suppose \(\mathfrak{P} \subset O_K \) is a prime ideal lying over a prime \(p \). Set
\[
\nu_p(\alpha) = \frac{1}{2} \text{ord}_p(a \theta \mathcal{D}), \quad \nu'_p(\alpha) = \frac{1}{2} \text{ord}_p(\alpha),
\]
where \(p = \mathfrak{P} \cap O_F \). For any \(x = (A_1, A_2, f) \in \mathcal{Z}\theta^B(\mathbb{F}_P) \), the strictly Henselian local ring \(O_{\mathcal{Z}, x}^{sh} \) is Artinian of length \(\nu_p(\alpha) \) if \(p \nmid d_B \) or \(p \mid d_B \) and \(\mathfrak{P} \nmid \ker(\theta) \), and is Artinian of length \(\nu'_p(\alpha) \) if \(p \mid d_B \) and \(\mathfrak{P} \mid \ker(\theta) \).

By length we mean the length of the ring as a module over itself.

Proof. Using Corollary 3.14, the same proof as in [10, Proposition 2.25] shows the functor \(\text{Def}(A_1, A_2, f) \) is represented by the ring \(\hat{O}_{\mathcal{Z}, x}^{sh} \). The result then follows from Propositions 6.2, 6.4, 6.6, and the fact that \(\text{length}(\hat{O}_{\mathcal{Z}, x}^{sh}) = \text{length}(O_{\mathcal{Z}, x}^{sh}) \).

7. Final formula

As in the introduction, let \(\chi \) be the quadratic Hecke character associated with the extension \(K/F \). For any \(\alpha \in F^\times \) totally positive and any ring homomorphism \(\theta : O_K \to O_B / m_B \), define a finite set of prime ideals
\[
\text{Diff}_\theta(\alpha) = \{ p \subset O_F : \chi_p(a \theta \mathcal{D}) = -1 \},
\]
where \(a_\theta = \ker(\theta) \cap O_F \). It follows from the product formula \(\prod_p \chi_p(x) = 1 \) that \(\text{Diff}_\theta(\alpha) \) has odd cardinality, and in particular is nonempty. Note that any prime in \(\text{Diff}_\theta(\alpha) \) is inert in \(K \). Recall \(\Gamma = \text{Cl}(O_{K_1}) \times \text{Cl}(O_{K_2}) \).
Lemma 7.1. For any prime $\mathfrak{P} \subset \mathcal{O}_K$ and any ring homomorphism $\theta: \mathcal{O}_K \rightarrow \mathcal{O}_B/\mathfrak{m}_B$, we have $\#(\mathcal{X}^B_\theta(\mathbb{F}_\mathfrak{P})) = |\Gamma|$.

Proof. Let $\theta_\mathfrak{P} = \theta|_{\mathcal{O}_K}$. By definition, an object of $\mathcal{X}^B_\theta(\mathbb{F}_\mathfrak{P})$ is a pair $(\mathbf{A}_1, \mathbf{A}_2)$ with \mathbf{A}_j an object of $\mathcal{Y}^B_j(\theta_j)(\mathbb{F}_\mathfrak{P})$, so by what we proved in Section 3.3,

$$\#(\mathcal{X}^B_\theta(\mathbb{F}_\mathfrak{P})) = \#(\mathcal{Y}^B_1(\theta_1)(\mathbb{F}_\mathfrak{P})) \cdot \#(\mathcal{Y}^B_2(\theta_2)(\mathbb{F}_\mathfrak{P})) = |\text{Cl}(\mathcal{O}_{K_1})| \cdot |\text{Cl}(\mathcal{O}_{K_2})| = |\Gamma|.$$

\hfill \square

Proposition 7.2. Suppose $\alpha \in F^\times$ and $\theta: \mathcal{O}_K \rightarrow \mathcal{O}_B/\mathfrak{m}_B$ is a ring homomorphism. If $\#\text{Diff}_\theta(\alpha) > 1$ then $\mathcal{X}^B_{\theta,\alpha} = \emptyset$. Suppose $\text{Diff}_\theta(\alpha) = \{\mathfrak{p}\}$, let $\mathfrak{P} \subset \mathcal{O}_K$ be the prime over \mathfrak{p}, and let $p\mathbb{Z} = \mathfrak{p} \cap \mathbb{Z}$. Then the stack $\mathcal{X}^B_{\theta,\alpha}$ is supported in characteristic p. More specifically, it only has geometric points over the field \mathbb{F}_p (if it has any at all).

Proof. By Proposition 4.6 the stack $\mathcal{X}^B_{\theta,\alpha}$ has no geometric points in characteristic 0. Suppose $\mathcal{X}^B_{\theta,\alpha}(\mathbb{F}_\mathfrak{P}) \neq \emptyset$ for some prime ideal $\mathfrak{P} \subset \mathcal{O}_K$. Fix $(\mathbf{A}_1, \mathbf{A}_2, f) \in \mathcal{X}^B_{\theta,\alpha}(\mathbb{F}_\mathfrak{P})$, and let $\mathfrak{p} = \mathfrak{P} \cap \mathcal{O}_F$ and $p\mathbb{Z} = \mathfrak{p} \cap \mathbb{Z}$. Any prime ideal \mathfrak{q} of \mathcal{O}_F lying over p or lying over any divisor of d_B is inert in \mathbb{K} (by Proposition 4.6(d) and our assumption about the primes dividing d_B), so for such a \mathfrak{q},

$$\chi_l(\mathfrak{q}) = \begin{cases} -1 & \text{if } l = \mathfrak{q} \\ 1 & \text{if } l \neq \mathfrak{q} \end{cases}$$

for any prime $l \subset \mathcal{O}_F$. By Theorem 5.11, the quadratic space $(\mathbb{K}, \beta \cdot N_{\mathbb{K}/\mathbb{F}})$ represents α for any $\beta \in \mathbb{K}^\times$ satisfying $\beta \mathcal{O}_F = a_\mathfrak{p}\mathcal{D}^{-1}\mathcal{O}_F$. It follows that $\chi_l(\alpha) = \chi_l((a_\mathfrak{p}\mathcal{D}^{-1}))$ for every prime $l \subset \mathcal{O}_F$, so $\text{Diff}_\theta(\alpha) = \{\mathfrak{p}\}$. This shows that if $\mathcal{X}^B_{\theta,\alpha}(\mathbb{F}_\mathfrak{P}) \neq \emptyset$ then $\text{Diff}_\theta(\alpha) = \{\mathfrak{p}\}$, where $\mathfrak{p} = \mathfrak{P} \cap \mathcal{O}_F$.

Recall the definition of the arithmetic degree of $\mathcal{X}^B_{\theta,\alpha}$ from the introduction:

$$\deg(\mathcal{X}^B_{\theta,\alpha}) = \sum_{\mathfrak{P} \subset \mathcal{O}_K} \log(|\mathfrak{P}|) \sum_{x \in \mathcal{X}^B_{\theta,\alpha}(\mathbb{F}_\mathfrak{P})} \text{length}(\mathfrak{P}^\mathfrak{b}_{\mathfrak{P}_X,\alpha}) / |\text{Aut}(x)|.$$

Theorem 7.3. Let $\alpha \in F^\times$ be totally positive and suppose $\alpha \in \mathcal{D}^{-1}$. Let $\theta: \mathcal{O}_K \rightarrow \mathcal{O}_B/\mathfrak{m}_B$ be a ring homomorphism with $a_\theta = \ker(\theta) \cap \mathcal{O}_F$, suppose $\text{Diff}_\theta(\alpha) = \{\mathfrak{p}\}$, and let $p\mathbb{Z} = \mathfrak{p} \cap \mathbb{Z}$.

(a) If $\mathfrak{p} \nmid d_B$ then

$$\deg(\mathcal{X}^B_{\theta,\alpha}) = \frac{1}{2} \log(p) \cdot \text{ord}_\mathfrak{p}(\alpha \mathcal{D}) \cdot \rho(\alpha a_\mathfrak{p}^{-1} \mathfrak{P}^{-1} \mathcal{D}).$$

(b) Suppose $\mathfrak{p} \mid d_B$ and let $\mathfrak{P} \subset \mathcal{O}_K$ be the prime over \mathfrak{P}. If \mathfrak{P} divides $\ker(\theta)$ then

$$\deg(\mathcal{X}^B_{\theta,\alpha}) = \frac{1}{2} \log(p) \cdot \text{ord}_\mathfrak{p}(\alpha) \cdot \rho(\alpha a_\mathfrak{p}^{-1} \mathfrak{P}^{-1} \mathcal{D}).$$

If \mathfrak{P} does not divide $\ker(\theta)$ then

$$\deg(\mathcal{X}^B_{\theta,\alpha}) = \frac{1}{2} \log(p) \cdot \text{ord}_\mathfrak{p}(\alpha \mathcal{D}) \cdot \rho(\alpha a_\mathfrak{p}^{-1} \mathfrak{P}^{-1} \mathcal{D}).$$

If $\alpha \notin \mathcal{D}^{-1}$ or if $\#\text{Diff}_\theta(\alpha) > 1$, then $\deg(\mathcal{X}^B_{\theta,\alpha}) = 0$.
Proof. (a) Using Theorem 6.7, Proposition 7.2, Lemma 4.7, and \(|F_\mathfrak{P}| = N_{K/Q}(\mathfrak{P}) = p^2\),

\[
\deg(\mathcal{F}_{\theta,\alpha}^B) = \log(|F_\mathfrak{P}|) \sum_{x \in \mathcal{F}_{\theta,\alpha}(\mathfrak{F}_\mathfrak{P})} \frac{\text{length}(\mathcal{O}^{|\mathfrak{P}|,x})}{|\text{Aut}(x)|} = 2 \log(p) \nu_\mathfrak{p}(\alpha) \sum_{(A_1,A_2,f) \in \mathcal{F}_{\theta,\alpha}(\mathfrak{F}_\mathfrak{P})} \frac{1}{|\text{Aut}(A_1,A_2,f)|} = 2 \log(p) \nu_\mathfrak{p}(\alpha) \sum_{(A_1,A_2) \in \mathcal{F}_{\theta,\alpha}(\mathfrak{F}_\mathfrak{P})} \sum_{f \in L(A_1,A_2)} \frac{1}{w_1w_2}.
\]

Now using Theorem 5.13, Proposition 5.14, and Lemma 7.1, we have

\[
\deg(\mathcal{F}_{\theta,\alpha}^B) = \log(p) \frac{\nu_\mathfrak{p}(\alpha)}{|\Gamma|} \sum_{(A_1,A_2) \in \mathcal{F}_{\theta,\alpha}(\mathfrak{F}_\mathfrak{P})} \prod_{\ell} O_\ell(\alpha,A_1,A_2) = \log(p) \frac{\nu_\mathfrak{p}(\alpha)}{|\Gamma|} \sum_{(A_1,A_2) \in \mathcal{F}_{\theta,\alpha}(\mathfrak{F}_\mathfrak{P})} \rho(\alpha a_\mathfrak{p}^{-1}p^{-1}D) = \frac{1}{2} \log(p) \cdot \text{ord}_p(\alpha \mathfrak{p}D) \cdot \rho(\alpha a_\mathfrak{p}^{-1}p^{-1}D).
\]

(b) Suppose \(p \mid d_B\). If \(\mathfrak{P}\) divides \(\ker(\theta)\) then a similar calculation as in (a), replacing \(\nu_\mathfrak{p}(\alpha)\) with \(\nu'_\mathfrak{p}(\alpha)\), gives the desired result. If \(\mathfrak{P}\) does not divide \(\ker(\theta)\) then the exact same calculation as in (a) gives the desired formula, noting that \(\nu_\mathfrak{p}(\alpha) = \frac{1}{2} \text{ord}_p(\alpha \mathfrak{p})\) for \(p \mid d_B\). The final claim follows from Proposition 7.2 and the fact that \(\deg_{\text{CM}}\) takes values in \(D^{-1}\).

\[\square\]

Appendix A. Hecke correspondences

In this section we will define the Hecke correspondences \(T_m\) on \(\mathcal{M}\) and \(\mathcal{M}^B\), and prove the equalities (1.2) and (1.4) in the introduction (we continue with the same notation as in Sections 1.1 and 1.2). For any ring \(R\) we write \(\text{length}(R)\) for \(\text{length}_R(R)\).

Fix a positive integer \(m\). Let \(\mathcal{M}(m)\) be the category fibered in groupoids over \(\text{Spec}(O_K)\) with \(\mathcal{M}(m)(S)\) the category of triples \((E_1,E_2,\varphi)\) with \(E_i\) an object of \(\mathcal{M}(S)\) and \(\varphi \in \text{Hom}_S(E_1,E_2)\) satisfying \(\deg(\varphi) = m\) on every connected component of \(S\). The category \(\mathcal{M}(m)\) is a stack, flat of relative dimension 1 over \(\text{Spec}(O_K)\), and there are two finite flat morphisms

\[
\mathcal{M}(m) \xrightarrow{\pi_1} \mathcal{M} \xrightarrow{\pi_2}
\]

given by \(\pi_1(E_1,E_2,\varphi) = E_i\). Define \(T_m : \text{Div}(\mathcal{M}) \rightarrow \text{Div}(\mathcal{M})\) by \(T_m = (\pi_2)_* \circ (\pi_1)^*\).

For \(i \in \{1,2\}\) let \(f_i : \mathfrak{K}_i \rightarrow \mathcal{M}\) be the finite morphism defined by forgetting the complex multiplication structure. Consider \(\mathfrak{D}_1 = \mathfrak{K}_1 \times f_1^* \mathcal{M} \times \mathfrak{K}_1 \mathcal{M}(m)\). Up to the obvious isomorphism of stacks, the objects of \(\mathfrak{D}_1\) can be described as triples \((E_1,E_2,\varphi)\) with \(E_1 \in \mathfrak{K}_1, E_2 \in \mathcal{M}\), and \(\varphi : E_1 \rightarrow E_2\) a degree \(m\) isogeny. Now let \(g\) be the composition \(\mathfrak{D}_1 \rightarrow \mathcal{M}(m) \xrightarrow{\pi_2} \mathcal{M}\).

The fiber product \(\mathfrak{D}_1 \times_{g,\mathcal{M},f_2} \mathfrak{K}_2\) is easily seen to be isomorphic to \(\mathfrak{D}_m\).

Viewing \(\mathfrak{D}_1\) as a closed substack of \(\mathcal{M}(m)\) through the image of \(\mathfrak{D}_1 \rightarrow \mathcal{M}(m)\), the divisor \(T_m \mathfrak{D}_1\) on \(\mathcal{M}\) is \((\pi_2)_*[\mathfrak{D}_1]\), where \([\mathfrak{D}_1]\) is the divisor associated with \(\mathfrak{D}_1\) (see [20, Definition
so to prove \(\deg(T_m) = I(T_m, Z_1, Z_2) \), we need to show
\[
(A.1) \quad \deg(D_1 \times_{\mathcal{M}} f_2 Y_2) = I((\pi_2)_*[Z_1], [Y_2]),
\]
where we are writing \([Y_2]\) for the divisor on \(\mathcal{M}\) determined by the image of \(f_2\).

Let \(k = \mathbb{F}_q\) for \(\mathcal{R} \subset \mathcal{O}_K\) a prime ideal and let \(x \in \mathcal{M}(k)\) be a geometric point. For any two prime divisors \(Z\) and \(Z'\) on \(\mathcal{M}\) intersecting properly, define the Serre intersection multiplicity at \(x\) by
\[
I^\mathcal{M}_x(Z, Z') = \sum_{i \geq 0} (-1)^i \text{length}_{\mathcal{O}_{\mathcal{M},x}} \text{Tor}_i^\mathcal{O}_{\mathcal{M},x}(\mathcal{O}_{\mathcal{M},x}^{\text{sh}}(Z), \mathcal{O}_{\mathcal{M},x}^{\text{sh}}(Z'))
\]
if \(x \in (Z \cap Z')(k)\) and set \(I^\mathcal{M}_x(Z, Z') = 0\) otherwise. Extend this definition bilinearly to all divisors on \(\mathcal{M}\). Again, if \(Z\) and \(Z'\) are prime divisors on \(\mathcal{M}\) intersecting properly, there is a way of defining a 0-cycle \(Z \cdot Z'\) on \(\mathcal{M}\) in such a way that
\[
\text{Coeff}_x(Z \cdot Z') = I^\mathcal{M}_x(Z, Z'),
\]
where \(\text{Coeff}_x(Z \cdot Z')\) is the coefficient in the 0-cycle \(Z \cdot Z'\) of the 0-dimensional closed substack determined by the image of \(x : \text{Spec}(k) \to \mathcal{M}\) (see [18, Chapter V] and [19, Chapter I]).

With notation as above, let \(D_2 = \mathcal{M}(m) \times_{\pi_2, \mathcal{M}} f_2 Y_2\), so \([D_2] = (\pi_2)^*[Y_2]\). Also, let \(x \in \mathcal{M}(m)(k)\) with \(x = (E_1, E_2, \varphi)\) where \(E_i \in \mathcal{N}\). We claim
\[
(A.2) \quad \text{Tor}_i^{\mathcal{O}_{\mathcal{M},x}}(\mathcal{O}_{\mathcal{M},x}^{\text{sh}}(D_1), \mathcal{O}_{\mathcal{M},x}^{\text{sh}}(D_2)) = 0
\]
for all \(i > 0\). To prove this, first consider the stack \(D'_1 = \mathcal{N} \times_{\pi_1, \mathcal{M}} f_1, \mathcal{M}(m)\). This category has objects \((E_1, E_2, \varphi)\) with \(E_1 \in \mathcal{M}, E_2 \in \mathcal{N}\), and \(\varphi : E_1 \to E_2\) a degree \(m\) isogeny. It follows that there is an isomorphism of stacks \(D'_1 = D_1\) and
\[
\mathcal{O}_{\mathcal{D}_1,x}^{\text{sh}} \cong \mathcal{O}_{\mathcal{D}_2,x}^{\text{sh}} \cong \mathcal{O}_{\mathcal{M},x}^{\text{sh}}(m) \otimes \mathcal{O}_{\mathcal{M},x}^{\text{sh}}(\pi_2(x)) \mathcal{O}_{\mathcal{N},x}(\varphi_1(x))
\]
We already have
\[
\mathcal{O}_{\mathcal{D}_2,x}^{\text{sh}} \cong \mathcal{O}_{\mathcal{M},x}^{\text{sh}}(m) \otimes \mathcal{O}_{\mathcal{M},x}^{\text{sh}}(\pi_2(x)) \mathcal{O}_{\mathcal{N},x}(\varphi_2(x))
\]
so from \(\pi_2\) being flat,
\[
\text{Tor}_i^{\mathcal{O}_{\mathcal{M},x}}(\mathcal{O}_{\mathcal{M},x}^{\text{sh}}(D_1), \mathcal{O}_{\mathcal{M},x}^{\text{sh}}(D_2)) \cong \mathcal{O}_{\mathcal{M},x}^{\text{sh}}(m) \otimes \mathcal{O}_{\mathcal{M},x}^{\text{sh}}(\pi_2(x)) \text{Tor}_i^{\mathcal{O}_{\mathcal{M},x}}(\mathcal{O}_{\mathcal{M},x}^{\text{sh}}(\pi_2(x)), \mathcal{O}_{\mathcal{N},x}(\varphi_2(x))).
\]
As \(\mathcal{O}_{\mathcal{M},x}(\pi_2(x))\) and \(\mathcal{O}_{\mathcal{N},x}(\varphi_2(x))\) are regular local rings of dimension 2 and 1, respectively, \(\mathcal{O}_{\mathcal{M},x}^{\text{sh}}(\pi_2(x))\) is a Cohen-Macaulay \(\mathcal{O}_{\mathcal{N},x}(\varphi_2(x))\)-module, and thus \((A.2)\) holds for all \(i > 0\) by [18, p. 111].

There is a projection formula
\[
((\pi_2)_*[Z_1]) \cdot [Y_2] = (\pi_2)_*[Z_1] \cdot ((\pi_2)^*[Y_2]),
\]
This is a special case of a more general formula, but it takes this form in our case since \((A.2)\) holds (see [18, p. 118, formulas (10), (11)]). It follows that for any \(y \in \mathcal{M}(k)\),
\[
I^\mathcal{M}_y((\pi_2)_*[Z_1], [Y_2]) = \text{Coeff}_y((\pi_2)_*[Z_1] \cdot [Y_2])
\]
\[
= \sum_{x \in \pi_2^{-1}(y)} \text{Coeff}_x([Z_1] \cdot ((\pi_2)^*[Y_2]))
\]
\[
= \sum_{x \in \pi_2^{-1}(y)} I^\mathcal{M}_x([Z_1], [Y_2]).
\]
Letting \(h_i : \mathcal{D}_i \to \mathcal{M}(m) \) be the natural projection, there is an isomorphism of stacks
\[
\mathcal{D}_1 \times_{h_1, \mathcal{M}(m), h_2} \mathcal{D}_2 \cong \mathcal{D}_1 \times_{g, \mathcal{M}, f_2} \mathcal{D}_2.
\]
Also, by (A.2) we have
\[
I_y^{\mathcal{M}(m)}([\mathcal{D}_1], [\mathcal{D}_2]) = \text{length}(\mathcal{O}^{\mathcal{M}(m)}_{\mathcal{D}_1, x} \otimes \mathcal{O}^{\mathcal{M}(m)}_{\mathcal{D}_2, x}).
\]
Therefore, for any \(y \in \mathcal{M}(k) \),
\[
\sum_{\pi \in \pi_y^{-1}([y])} \text{length}(\mathcal{O}^{\mathcal{M}(m)}_{\mathcal{D}_1, x} \otimes \mathcal{O}^{\mathcal{M}(m)}_{\mathcal{D}_2, x}) = \sum_{\pi \in \pi_y^{-1}([y])} \text{length}(\mathcal{O}^{\mathcal{M}(m)}_{\mathcal{D}_1 \times_{h_1, \mathcal{M}(m), h_2} \mathcal{D}_2, x})
\]
\[
= \sum_{\pi \in \pi_y^{-1}([y])} I_y^{\mathcal{M}(m)}([\mathcal{D}_1], [\mathcal{D}_2])
\]
\[
= I_y^{\mathcal{M}(m)}((\pi), [\mathcal{D}_1], [\mathcal{D}_2]).
\]
Since \(\mathcal{D}_2 \) is regular and the local ring at \(y \) of any prime divisor appearing in \((\pi), [\mathcal{D}_1] \) is a 1-dimensional domain, hence Cohen-Macaulay, the Tor terms appearing in the sum
\[
I_y^{\mathcal{M}(m)}((\pi), [\mathcal{D}_1], [\mathcal{D}_2])
\]
are zero for all \(i > 0 \). Multiplying both sides of the above equality by \(\log(|\mathcal{F}_Y|)/|\text{Aut}(y)| \) and summing over all \(y \) and over all \(\mathcal{F} \) then gives the equality (A.1).

The definition of \(T_m : \text{Div}(\mathcal{M}^B) \to \text{Div}(\mathcal{M}^B) \) and the proof of the equality \(\text{deg}(T_m^B) = I(T_m^B, \mathcal{D}_1^B, \mathcal{D}_2^B) \) is exactly the same as the elliptic curve case. The equality (1.4) then follows from the decomposition (4.1).

Acknowledgment

This research forms part of my Boston College Ph.D. thesis. I would like to thank my advisor Ben Howard.

References

